ترغب بنشر مسار تعليمي؟ اضغط هنا

A Non-Stationary Channel Model with Correlated NLoS/LoS States for ELAA-mMIMO

84   0   0.0 ( 0 )
 نشر من قبل Jiuyu Liu
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Jiuyu Liu




اسأل ChatGPT حول البحث

In this paper, a novel spatially non-stationary channel model is proposed for link-level computer simulations of massive multiple-input multiple-output (mMIMO) with extremely large aperture array (ELAA). The proposed channel model allows a mix of non-line-of-sight (NLoS) and LoS links between a user and service antennas. The NLoS/LoS state of each link is characterized by a binary random variable, which obeys a correlated Bernoulli distribution. The correlation is described in the form of an exponentially decaying window. In addition, the proposed model incorporates shadowing effects which are non-identical for NLoS and LoS states. It is demonstrated, through computer emulation, that the proposed model can capture almost all spatially non-stationary fading behaviors of the ELAA-mMIMO channel. Moreover, it has a low implementational complexity. With the proposed channel model, Monte-Carlo simulations are carried out to evaluate the channel capacity of ELAA-mMIMO. It is shown that the ELAA-mMIMO channel capacity has considerably different stochastic characteristics from the conventional mMIMO due to the presence of channel spatial non-stationarity.



قيم البحث

اقرأ أيضاً

This paper analyzes the impact of non-Gaussian multipath component (MPC) amplitude distributions on the performance of Compressed Sensing (CS) channel estimators for OFDM systems. The number of dominant MPCs that any CS algorithm needs to estimate in order to accurately represent the channel is characterized. This number relates to a Compressibility Index (CI) of the channel that depends on the fourth moment of the MPC amplitude distribution. A connection between the Mean Squared Error (MSE) of any CS estimation algorithm and the MPC amplitude distribution fourth moment is revealed that shows a smaller number of MPCs is needed to well-estimate channels when these components have large fourth moment amplitude gains. The analytical results are validated via simulations for channels with lognormal MPCs such as the NYU mmWave channel model. These simulations show that when the MPC amplitude distribution has a high fourth moment, the well known CS algorithm of Orthogonal Matching Pursuit performs almost identically to the Basis Pursuit De-Noising algorithm with a much lower computational cost.
Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, wh en only the uplink channel information is available. Our main contribution is to propose a model-driven learning technique that exploits the structure of the optimal downlink beamforming to design an effective hybrid learning strategy with the aim to maximize the sum rate performance. This is achieved by jointly considering the learning performance of the downlink channel, the power and the sum rate in the training stage. The proposed approach applies to generic cases in which the uplink channel information is available, but its relation to the downlink channel is unknown and does not require an explicit downlink channel estimation. We further extend the developed technique to massive multiple-input multiple-output scenarios and achieve a distributed learning strategy for multicell systems without an inter-cell signalling overhead. Simulation results verify that our proposed method provides the performance close to the state of the art numerical algorithms with perfect downlink channel information and significantly outperforms existing data-driven methods in terms of the sum rate.
Deep neural networks (DNNs) based digital receivers can potentially operate in complex environments. However, the dynamic nature of communication channels implies that in some scenarios, DNN-based receivers should be periodically retrained in order t o track temporal variations in the channel conditions. To this aim, frequent transmissions of lengthy pilot sequences are generally required, at the cost of substantial overhead. In this work we propose a DNN-aided symbol detector, Meta-ViterbiNet, that tracks channel variations with reduced overhead by integrating three complementary techniques: 1) We leverage domain knowledge to implement a model-based/data-driven equalizer, ViterbiNet, that operates with a relatively small number of trainable parameters; 2) We tailor a meta-learning procedure to the symbol detection problem, optimizing the hyperparameters of the learning algorithm to facilitate rapid online adaptation; and 3) We adopt a decision-directed approach based on coded communications to enable online training with short-length pilot blocks. Numerical results demonstrate that Meta-ViterbiNet operates accurately in rapidly-varying channels, outperforming the previous best approach, based on ViterbiNet or conventional recurrent neural networks without meta-learning, by a margin of up to 0.6dB in bit error rate in various challenging scenarios.
80 - Piao Zeng , Qingqing Wu , 2021
This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal mult iple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.
In this paper, we introduce a sophisticated path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions to study their impact on the performance of dense small cell networks (SCNs). Analytical results are obtaine d for the coverage probability and the area spectral efficiency (ASE), assuming both a general path loss model and a special case with a linear LoS probability function. The performance impact of LoS and NLoS transmissions in dense SCNs in terms of the coverage probability and the ASE is significant, both quantitatively and qualitatively, compared with the previous work that does not differentiate LoS and NLoS transmissions. Our analysis demonstrates that the network coverage probability first increases with the increase of the base station (BS) density, and then decreases as the SCN becomes denser. This decrease further makes the ASE suffer from a slow growth or even a decrease with network densification. The ASE will grow almost linearly as the BS density goes ultra dense. For practical regime of the BS density, the performance results derived from our analysis are distinctively different from previous results, and thus shed new insights on the design and deployment of future dense SCNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا