ترغب بنشر مسار تعليمي؟ اضغط هنا

The trace of primitive and $2$-primitive elements in finite fields, revisited

106   0   0.0 ( 0 )
 نشر من قبل Giorgos Kapetanakis
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By definition primitive and $2$-primitive elements of a finite field extension $mathbb{F}_{q^n}$ have order $q^n-1$ and $(q^n-1)/2$, respectively. We have already shown that, with minor reservations, there exists a primitive element and a $2$-primitive element $xi in mathbb{F}_{q^n}$ with prescribed trace in the ground field $mathbb{F}_q$. Here we amend our previous proofs of these results, firstly, by a reduction of these problems to extensions of prime degree $n$ and, secondly, by deriving an exact expression for the number of squares in $mathbb{F}_{q^n}$ whose trace has prescribed value in $mathbb{F}_q$. The latter corrects an error in the proof in the case of $2$-primitive elements. We also streamline the necessary computations.



قيم البحث

اقرأ أيضاً

Let $mathbb{F}_{q^n}$ be a finite field with $q^n$ elements, and let $m_1$ and $m_2$ be positive integers. Given polynomials $f_1(x), f_2(x) in mathbb{F}_q[x]$ with $textrm{deg}(f_i(x)) leq m_i$, for $i = 1, 2$, and such that the rational function $f _1(x)/f_2(x)$ belongs to a certain set which we define, we present a sufficient condition for the existence of a primitive element $alpha in mathbb{F}_{q^n}$, normal over $mathbb{F}_q$, such that $f_1(alpha)/f_2(alpha)$ is also primitive.
We establish an analogue of the classical Polya-Vinogradov inequality for $GL(2, F_p)$, where $p$ is a prime. In the process, we compute the `singular Gauss sums for $GL(2, F_p)$. As an application, we show that the collection of elements in $GL(2,Z) $ whose reduction modulo $p$ are of maximal order in $GL(2, F_p)$ and whose matrix entries are bounded by $x$ has the expected size as soon as $xgg p^{1/2+ep}$ for any $ep>0$. In particular, there exist elements in $GL(2,Z)$ with matrix entries that are of the order $O(p^{1/2+ep})$ whose reduction modulo $p$ are primitive elements.
Fix $a in mathbb{Z}$, $a otin {0,pm 1}$. A simple argument shows that for each $epsilon > 0$, and almost all (asymptotically 100% of) primes $p$, the multiplicative order of $a$ modulo $p$ exceeds $p^{frac12-epsilon}$. It is an open problem to show t he same result with $frac12$ replaced by any larger constant. We show that if $a,b$ are multiplicatively independent, then for almost all primes $p$, one of $a,b,ab, a^2b, ab^2$ has order exceeding $p^{frac{1}{2}+frac{1}{30}}$. The same method allows one to produce, for each $epsilon > 0$, explicit finite sets $mathcal{A}$ with the property that for almost all primes $p$, some element of $mathcal{A}$ has order exceeding $p^{1-epsilon}$. Similar results hold for orders modulo general integers $n$ rather than primes $p$.
92 - Hai-Liang Wu 2019
Let $p=2n+1$ be an odd prime, and let $zeta_{p^2-1}$ be a primitive $(p^2-1)$-th root of unity in the algebraic closure $overline{mathbb{Q}_p}$ of $mathbb{Q}_p$. We let $ginmathbb{Z}_p[zeta_{p^2-1}]$ be a primitive root modulo $pmathbb{Z}_p[zeta_{p^2 -1}]$ with $gequiv zeta_{p^2-1}pmod {pmathbb{Z}_p[zeta_{p^2-1}]}$. Let $Deltaequiv3pmod4$ be an arbitrary quadratic non-residue modulo $p$ in $mathbb{Z}$. By the Local Existence Theorem we know that $mathbb{Q}_p(sqrt{Delta})=mathbb{Q}_p(zeta_{p^2-1})$. For all $xinmathbb{Z}[sqrt{Delta}]$ and $yinmathbb{Z}_p[zeta_{p^2-1}]$ we use $bar{x}$ and $bar{y}$ to denote the elements $xmod pmathbb{Z}[sqrt{Delta}]$ and $ymod pmathbb{Z}_p[zeta_{p^2-1}]$ respectively. If we set $a_k=k+sqrt{Delta}$ for $0le kle p-1$, then we can view the sequence $$S := overline{a_0^2}, cdots, overline{a_0^2n^2}, cdots,overline{a_{p-1}^2}, cdots, overline{a_{p-1}^2n^2}cdots, overline{1^2}, cdots,overline{n^2}$$ as a permutation $sigma$ of the sequence $$S^* := overline{g^2}, overline{g^4}, cdots,overline{g^{p^2-1}}.$$ We determine the sign of $sigma$ completely in this paper.
327 - Trevor Hyde 2018
We give a simple derivation of the formula for the number of normal elements in an extension of finite fields. Our proof is based on the fact that units in the Galois group ring of a field extension act simply transitively on normal elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا