ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting

133   0   0.0 ( 0 )
 نشر من قبل Binghui Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In crowd counting, due to the problem of laborious labelling, it is perceived intractability of collecting a new large-scale dataset which has plentiful images with large diversity in density, scene, etc. Thus, for learning a general model, training with data from multiple different datasets might be a remedy and be of great value. In this paper, we resort to the multi-domain joint learning and propose a simple but effective Domain-specific Knowledge Propagating Network (DKPNet)1 for unbiasedly learning the knowledge from multiple diverse data domains at the same time. It is mainly achieved by proposing the novel Variational Attention(VA) technique for explicitly modeling the attention distributions for different domains. And as an extension to VA, Intrinsic Variational Attention(InVA) is proposed to handle the problems of over-lapped domains and sub-domains. Extensive experiments have been conducted to validate the superiority of our DKPNet over several popular datasets, including ShanghaiTech A/B, UCF-QNRF and NWPU.

قيم البحث

اقرأ أيضاً

State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. While effective, these data-driven approaches rely on large amount of data annotation to achieve good performance, which stops these model s from being deployed in emergencies during which data annotation is either too costly or cannot be obtained fast enough. One popular solution is to use synthetic data for training. Unfortunately, due to domain shift, the resulting models generalize poorly on real imagery. We remedy this shortcoming by training with both synthetic images, along with their associated labels, and unlabeled real images. To this end, we force our network to learn perspective-aware features by training it to recognize upside-down real images from regular ones and incorporate into it the ability to predict its own uncertainty so that it can generate useful pseudo labels for fine-tuning purposes. This yields an algorithm that consistently outperforms state-of-the-art cross-domain crowd counting ones without any extra computation at inference time.
Transferring knowledges learned from multiple source domains to target domain is a more practical and challenging task than conventional single-source domain adaptation. Furthermore, the increase of modalities brings more difficulty in aligning featu re distributions among multiple domains. To mitigate these problems, we propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework via exploring interactions among domains. In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations. On such basis, a graph model is learned to predict query samples under the guidance of correlated prototypes. In addition, we design a Relation Alignment Loss (RAL) to facilitate the consistency of categories relational interdependency and the compactness of features, which boosts features intra-class invariance and inter-class separability. Comprehensive results on public benchmark datasets demonstrate that our approach outperforms existing methods with a remarkable margin. Our code is available at url{https://github.com/ChrisAllenMing/LtC-MSDA}
Occlusions, complex backgrounds, scale variations and non-uniform distributions present great challenges for crowd counting in practical applications. In this paper, we propose a novel method using an attention model to exploit head locations which a re the most important cue for crowd counting. The attention model estimates a probability map in which high probabilities indicate locations where heads are likely to be present. The estimated probability map is used to suppress non-head regions in feature maps from several multi-scale feature extraction branches of a convolution neural network for crowd density estimation, which makes our method robust to complex backgrounds, scale variations and non-uniform distributions. In addition, we introduce a relative deviation loss to compensate a commonly used training loss, Euclidean distance, to improve the accuracy of sparse crowd density estimation. Experiments on Shanghai-Tech, UCF_CC_50 and World-Expo10 data sets demonstrate the effectiveness of our method.
200 - Yongtuo Liu , Dan Xu , Sucheng Ren 2021
Existing domain adaptation methods for crowd counting view each crowd image as a whole and reduce domain discrepancies on crowds and backgrounds simultaneously. However, we argue that these methods are suboptimal, as crowds and backgrounds have quite different characteristics and backgrounds may vary dramatically in different crowd scenes (see Fig.~ref{teaser}). This makes crowds not well aligned across domains together with backgrounds in a holistic manner. To this end, we propose to untangle crowds and backgrounds from crowd images and design fine-grained domain adaption methods for crowd counting. Different from other tasks which possess region-based fine-grained annotations (e.g., segments or bounding boxes), crowd counting only annotates one point on each human head, which impedes the implementation of fine-grained adaptation methods. To tackle this issue, we propose a novel and effective schema to learn crowd segmentation from point-level crowd counting annotations in the context of Multiple Instance Learning. We further leverage the derived segments to propose a crowd-aware fine-grained domain adaptation framework for crowd counting, which consists of two novel adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). Specifically, the CRT module is designed to guide crowd features transfer across domains beyond background distractions, and the CDA module dedicates to constraining the target-domain crowd density distributions. Extensive experiments on multiple cross-domain settings (i.e., Synthetic $rightarrow$ Real, Fixed $rightarrow$ Fickle, Normal $rightarrow$ BadWeather) demonstrate the superiority of the proposed method compared with state-of-the-art methods.
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse atte ntion mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا