ﻻ يوجد ملخص باللغة العربية
An important scenario for image quality assessment (IQA) is to evaluate image restoration (IR) algorithms. The state-of-the-art approaches adopt a full-reference paradigm that compares restored images with their corresponding pristine-quality images. However, pristine-quality images are usually unavailable in blind image restoration tasks and real-world scenarios. In this paper, we propose a practical solution named degraded-reference IQA (DR-IQA), which exploits the inputs of IR models, degraded images, as references. Specifically, we extract reference information from degraded images by distilling knowledge from pristine-quality images. The distillation is achieved through learning a reference space, where various degraded images are encouraged to share the same feature statistics with pristine-quality images. And the reference space is optimized to capture deep image priors that are useful for quality assessment. Note that pristine-quality images are only used during training. Our work provides a powerful and differentiable metric for blind IRs, especially for GAN-based methods. Extensive experiments show that our results can even be close to the performance of full-reference settings.
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behavior
No-reference image quality assessment (NR-IQA) has received increasing attention in the IQA community since reference image is not always available. Real-world images generally suffer from various types of distortion. Unfortunately, existing NR-IQA m
In this paper, we propose a deep learning based video quality assessment (VQA) framework to evaluate the quality of the compressed users generated content (UGC) videos. The proposed VQA framework consists of three modules, the feature extraction modu
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations, it is a complex and unsolved problem due to the absence of the pristine reference image. In this paper,
To guarantee a satisfying Quality of Experience (QoE) for consumers, it is required to measure image quality efficiently and reliably. The neglect of the high-level semantic information may result in predicting a clear blue sky as bad quality, which