ﻻ يوجد ملخص باللغة العربية
We present the results of an experiment on measuring the gradient of the Casimir force between an Au-coated hollow glass microsphere and graphene-coated fused silica plate by means of a modified atomic force microscope cantilever based technique operated in the dynamic regime. These measurements were performed in high vacuum at room temperature. The energy gap and the concentration of impurities in the graphene sample used have been measured utilizing scanning tunnelling spectroscopy and Raman spectroscopy, respectively. The measurement results for the gradients of the Casimir force are found to be in a very good agreement with theory using the polarization tensor of graphene at nonzero temperature depending on the energy gap and chemical potential with no fitting parameters. The theoretical predictions of the same theory at zero temperature are experimentally excluded over the measurement region from 250 to 517 nm. We have also investigated a dependence of the thermal correction to the Casimir force gradient on the values of the energy gap, chemical potential, and on the presence of a substrate supporting the graphene sheet. It is shown that the observed thermal effect is consistent in size with that arising for pristine graphene sheets if the impact of real conditions such as nonzero values of the energy gap, chemical potential, and the presence of a substrate is included. Implications of the obtained results to the resolution of the long-standing problems in Casimir physics are discussed. In addition to the paper published previously [M. Liu {it et al}., Phys. Rev. Lett. {bf 126}, 206802 (2021)], we present measurement results for the energy gap of the graphene sample, double the experimental data for the Casimir force, and perform a more complete theoretical analysis.
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Ca
The dynamical Casimir effect is an intriguing phenomenon in which photons are generated from vacuum due to a non-adiabatic change in some boundary conditions. In particular, it connects the motion of an accelerated mechanical mirror to the generation
We propose a superconducting circuit comprising a dc-SQUID with mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or non-degenerate parametric interaction generated via the dyn
A fundamental prediction of quantum mechanics is that there are random fluctuations everywhere in a vacuum because of the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known
We derive modified reflection coefficients for electromagnetic waves in the THz and far infrared range. The idea is based on hydrodynamic boundary conditions for metallic conduction electrons. The temperature-dependent part of the Casimir pressure be