ﻻ يوجد ملخص باللغة العربية
In this paper, we first prove an abstract theorem on the existence of polynomial attractors and the concrete estimate of their attractive velocity for infinite-dimensional dynamical systems, then apply this theorem to a class of wave equations with nonlocal weak damping and anti-damping in case that the nonlinear term~$f$~is of subcritical growth.
This paper is devoted to the quantitative study of the attractive velocity of generalized attractors for infinite-dimensional dynamical systems. We introduce the notion of~$varphi$-attractor whose attractive speed is characterized by a general non-ne
We study the period doubling renormalization operator for dynamics which present two coupled laminar regimes with two weakly expanding fixed points. We focus our analysis on the potential point of view, meaning we want to solve $$V=mathcal{R} (V):=Vc
Attractors of cooperative dynamical systems are particularly simple; for example, a nontrivial periodic orbit cannot be an attractor. This paper provides characterizations of attractors for the wider class of coherent systems, defined by the property
This paper shows that the celebrated Embedding Theorem of Takens is a particular case of a much more general statement according to which, randomly generated linear state-space representations of generic observations of an invertible dynamical system
We study the topological properties of attractors of Iterated Function Systems (I.F.S.) on the real line, consisting of affine maps of homogeneous contraction ratio. These maps define what we call a second generation I.F.S.: they are uncountably many