ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Oscillations mediated by the Higgs field

58   0   0.0 ( 0 )
 نشر من قبل Walter Schmidt-Parzefall
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino oscillations occur within the frame of the Standard Model, assuming that a neutrino is composed of a left handed and a right handed mass less fermion. Neutrino oscillations proceed via the 4-component Higgs field as intermediate state.

قيم البحث

اقرأ أيضاً

112 - C. Grieb , J. M. Link , M. L. Pitt 2007
Sterile neutrino ($ u_s$) conversion in meter scale baselines can be sensitively probed using mono-energetic, sub-MeV, flavor pure $ u_e$s from an artificial MCi source and the unique technology of the LENS low energy solar $ u_e$ detector. Active-st erile {em oscillations} can be directly observed in the granular LENS detector itself to critically test and extend results of short baseline accelerator and reactor experiments.
We show that the mathematical proof of the four color theorem yields a perfect interpretation of the Standard Model of particle physics. The steps of the proof enable us to construct the t-Riemann surface and particle frame which forms the gauge. We specify well-defined rules to match the Standard Model in a one-to-one correspondence with the topological and algebraic structure of the particle frame. This correspondence is exact - it only allows the particles and force fields to have the observable properties of the Standard Model, giving us a Grand Unified Theory. In this paper, we concentrate on explicitly specifying the quarks, gauge vector bosons, the Standard Model scalar Higgs $H^{0}$ boson and the weak force field. Using all the specifications of our mathematical model, we show how to calculate the values of the Weinberg and Cabibbo angles on the particle frame. Finally, we present our prediction of the Higgs $H^{0}$ boson mass $M_{H^{0}} = 125.992 simeq 126 GeV$, as a direct consequence of the proof of the four color theorem.
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence b etween them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrinos interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
68 - Walter Grimus 2019
We consider neutrino oscillations in vacuum in the framework of quantum field theory in which neutrino production and detection processes are part of a single Feynman diagram and the corresponding cross section is computed in the standard way, i.e. w ith final states represented by plane waves. We use assumptions which are realized in actual experiments and concentrate on the detection process. Moreover, we also allow for a finite time interval of length $tau$ during which the detector records neutrino events. In this context we are motivated by accelerator-neutrino oscillation experiments where data taking is synchronized in time with the proton spill time of the accelerator. Given the final momenta and the direction of neutrino propagation, we find that in the oscillation amplitude---for all practical purposes---the neutrino energy $Q$ is fixed, apart from an interval of order $2pihbar/tau$ around a mean energy $bar Q$; this is an expression of energy non-conservation or the time-energy uncertainty relation in the detection process due to $tau < infty$. We derive in excellent approximation that in the amplitude the oscillation effect originates from massive neutrinos with the same energy $bar Q$, i.e. oscillations take place in space without any decoherece effect, while the remaining integration over $Q$ in the interval of order $2pihbar/tau$ around $bar Q$ results in a time-correlation function expressing the time delay between neutrino production and detection.
We discuss SUSY models in which renormalizable lepton number violating couplings hide the decay of the Higgs through h -> chi_1^0 + chi_1^0 followed by chi_1^0 -> tau + 2 jets or chi_1^0 -> u_tau + 2 jets and also explain neutrino masses. This mecha nism can be made compatible with gauge mediated SUSY breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا