ترغب بنشر مسار تعليمي؟ اضغط هنا

Concepts of super-valley electron and twist induced quantum super-valley Hall effect

301   0   0.0 ( 0 )
 نشر من قبل Chungang Duan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective motions of electrons in solids are often conveniently described as the movements of quasiparticles. Here we show that these quasiparticles can be hierarchical. Examples are valley electrons, which move in hyperorbits within a honeycomb lattice and forms a valley pseudospin, or the self-rotation of the wave-packet. We demonstrate that twist can induce higher level motions of valley electrons around the moire superlattice of bilayer systems. Such larger scale collective movement of the valley electron, can be regarded as the self-rotation (spin) of a higher-level quasiparticle, or what we call super-valley electron. This quasiparticle, in principle, may have mesoscopic size as the moire supercell can be very large. It could result in fascinating properties like topological and chiral transport, superfluid, etc., even though these properties are absent in the pristine untwisted system. Using twisted antiferromagnetically coupled bilayer with honeycomb lattice as example, we find that there forms a Haldane-like superlattice with periodically staggered magnetic flux and the system could demonstrate quantum super-valley Hall effect. Further analyses reveal that the super-valley electron possesses opposite chirality when projected onto the top and bottom layer, and can be described as two components (magnetic monopoles) of Dirac fermion entangled in real-space, or a giant electron. Our theory opens a new way to understand the collective motions of electrons in solid.

قيم البحث

اقرأ أيضاً

Valleytronics rooted in the valley degree of freedom is of both theoretical and technological importance as it offers additional opportunities for information storage and electronic, magnetic and optical switches. In analogy to ferroelectric material s with spontaneous charge polarization in electronics, as well as ferromagnetic materials with spontaneous spin polarization in spintronics, here we introduce a new member of ferroic-family, i.e. a ferrovalley material with spontaneous valley polarization. Combining a two-band kp model with first-principles calculations, we show that 2H-VSe2 monolayer, where the spin-orbit coupling coexists with the intrinsic exchange interaction of transition-metal-d electrons, is such a room-temperature ferrovalley material. We further predict that such system could demonstrate many distinctive properties, for example, chirality-dependent optical band gap and more interestingly, anomalous valley Hall effect. On account of the latter, a series of functional devices based on ferrovalley materials, such as valley-based nonvolatile random access memory, valley filter, are contemplated for valleytronic applications.
Anomalous valley Hall (AVH) effect is a fundamental transport phenomenon in the field of condensed-matter physics. Usually, the research on AVH effect is mainly focused on 2D lattices with ferromagnetic order. Here, by means of model analysis, we pre sent a general design principle for realizing AVH effect in antiferromagnetic monolayers, which involves the introduction of nonequilibrium potentials to break of PT symmetry. Using first-principles calculations, we further demonstrate this design principle by stacking antiferromagnetic monolayer MnPSe3 on ferroelectric monolayer Sc2CO2 and achieve the AVH effect. The AVH effect can be well controlled by modulating the stacking pattern. In addition, by reversing the ferroelectric polarization of Sc2CO2 via electric field, the AVH effect in monolayer MnPSe3 can be readily switched on or off. The underlying physics are revealed in detail. Our findings open up a new direction of research on exploring AVH effect.
76 - J.Y. Liu , J. Yu , J.L. Ning 2019
Spin-valley locking in the band structure of monolayers of MoS$_2$ and other group-VI dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has spa rsely been seen in bulk materials. Here, we report spin-valley locking in a bulk Dirac semimetal BaMnSb$_2$. We find valley and spin are inherently coupled for both valence and conduction bands in this material. This is revealed by comprehensive studies using first principle calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy and quantum transport measurements. Moreover, this material also exhibits a stacked quantum Hall effect. The spin-valley degeneracy extracted from the plateau height of quantized Hall resistivity is close to 2. This result, together with the observed Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we have also observed a two-dimensional chiral metal at the side surface, which represents a novel topological quantum liquid. These findings establish BaMnSb$_2$ as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.
126 - Pei Zhaos , Yandong Ma , Hao Wang 2020
Valley, as a new degree of freedom for electrons, has drawn considerable attention due to its significant potential for encoding and storing information. Lifting the energy degeneracy to achieve valley polarization is necessary for realizing valleytr onic devices. Here, on the basis of first-principles calculations, we show that single-layer FeCl2 exhibits a large spontaneous valley polarization (~101 meV) arising from the broken time-reversal symmetry and spin-orbital coupling, which can be continuously tuned by varying the direction of magnetic crystalline. By employing the perturbation theory, the underlying physical mechanism is unveiled. Moreover, the coupling between valley degree of freedom and ferromagnetic order could generate a spin- and valley-polarized anomalous Hall current in the presence of the in-plane electric field, facilitating its experimental exploration and practical applications.
We argue that by inducing superconductivity in graphene via the proximity effect, it is possible to observes the quantum valley Hall effect. In the presence of magnetic field, supercurrent causes valley pseudospin to accumulate at the edges of the su perconducting strip. This, and the structure of the superconducting vortex core, provide possibilities to experimentally observe aspects of the deconfined quantum criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا