ترغب بنشر مسار تعليمي؟ اضغط هنا

IFR: Iterative Fusion Based Recognizer For Low Quality Scene Text Recognition

77   0   0.0 ( 0 )
 نشر من قبل Zhiwei Jia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although recent works based on deep learning have made progress in improving recognition accuracy on scene text recognition, how to handle low-quality text images in end-to-end deep networks remains a research challenge. In this paper, we propose an Iterative Fusion based Recognizer (IFR) for low quality scene text recognition, taking advantage of refined text images input and robust feature representation. IFR contains two branches which focus on scene text recognition and low quality scene text image recovery respectively. We utilize an iterative collaboration between two branches, which can effectively alleviate the impact of low quality input. A feature fusion module is proposed to strengthen the feature representation of the two branches, where the features from the Recognizer are Fused with image Restoration branch, referred to as RRF. Without changing the recognition network structure, extensive quantitative and qualitative experimental results show that the proposed method significantly outperforms the baseline methods in boosting the recognition accuracy of benchmark datasets and low resolution images in TextZoom dataset.



قيم البحث

اقرأ أيضاً

Irregular scene text, which has complex layout in 2D space, is challenging to most previous scene text recognizers. Recently, some irregular scene text recognizers either rectify the irregular text to regular text image with approximate 1D layout or transform the 2D image feature map to 1D feature sequence. Though these methods have achieved good performance, the robustness and accuracy are still limited due to the loss of spatial information in the process of 2D to 1D transformation. Different from all of previous, we in this paper propose a framework which transforms the irregular text with 2D layout to character sequence directly via 2D attentional scheme. We utilize a relation attention module to capture the dependencies of feature maps and a parallel attention module to decode all characters in parallel, which make our method more effective and efficient. Extensive experiments on several public benchmarks as well as our collected multi-line text dataset show that our approach is effective to recognize regular and irregular scene text and outperforms previous methods both in accuracy and speed.
89 - Zhi Qiao , Yu Zhou , Jin Wei 2021
Nowadays, scene text recognition has attracted more and more attention due to its various applications. Most state-of-the-art methods adopt an encoder-decoder framework with attention mechanism, which generates text autoregressively from left to righ t. Despite the convincing performance, the speed is limited because of the one-by-one decoding strategy. As opposed to autoregressive models, non-autoregressive models predict the results in parallel with a much shorter inference time, but the accuracy falls behind the autoregressive counterpart considerably. In this paper, we propose a Parallel, Iterative and Mimicking Network (PIMNet) to balance accuracy and efficiency. Specifically, PIMNet adopts a parallel attention mechanism to predict the text faster and an iterative generation mechanism to make the predictions more accurate. In each iteration, the context information is fully explored. To improve learning of the hidden layer, we exploit the mimicking learning in the training phase, where an additional autoregressive decoder is adopted and the parallel decoder mimics the autoregressive decoder with fitting outputs of the hidden layer. With the shared backbone between the two decoders, the proposed PIMNet can be trained end-to-end without pre-training. During inference, the branch of the autoregressive decoder is removed for a faster speed. Extensive experiments on public benchmarks demonstrate the effectiveness and efficiency of PIMNet. Our code will be available at https://github.com/Pay20Y/PIMNet.
Linguistic knowledge is of great benefit to scene text recognition. However, how to effectively model linguistic rules in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited capacity of language models come s from: 1) implicitly language modeling; 2) unidirectional feature representation; and 3) language model with noise input. Correspondingly, we propose an autonomous, bidirectional and iterative ABINet for scene text recognition. Firstly, the autonomous suggests to block gradient flow between vision and language models to enforce explicitly language modeling. Secondly, a novel bidirectional cloze network (BCN) as the language model is proposed based on bidirectional feature representation. Thirdly, we propose an execution manner of iterative correction for language model which can effectively alleviate the impact of noise input. Additionally, based on the ensemble of iterative predictions, we propose a self-training method which can learn from unlabeled images effectively. Extensive experiments indicate that ABINet has superiority on low-quality images and achieves state-of-the-art results on several mainstream benchmarks. Besides, the ABINet trained with ensemble self-training shows promising improvement in realizing human-level recognition. Code is available at https://github.com/FangShancheng/ABINet.
Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention bas ed encoder-decoder framework, which is originally designed for speech recognition. However, different from speech voices, which are 1D signals, text instances are essentially distributed in 2D image spaces. To adhere to and make use of the 2D nature of text for higher recognition accuracy, we extend the vanilla CTC model to a second dimension, thus creating 2D-CTC. 2D-CTC can adaptively concentrate on most relevant features while excluding the impact from clutters and noises in the background; It can also naturally handle text instances with various forms (horizontal, oriented and curved) while giving more interpretable intermediate predictions. The experiments on standard benchmarks for scene text recognition, such as IIIT-5K, ICDAR 2015, SVP-Perspective, and CUTE80, demonstrate that the proposed 2D-CTC model outperforms state-of-the-art methods on the text of both regular and irregular shapes. Moreover, 2D-CTC exhibits its superiority over prior art on training and testing speed. Our implementation and models of 2D-CTC will be made publicly available soon later.
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we hav e to train STR models without synthetic data: for handwritten or artistic texts that are difficult to generate synthetically and for languages other than English for which we do not always have synthetic data. However, there has been implicit common knowledge that training STR models on real data is nearly impossible because real data is insufficient. We consider that this common knowledge has obstructed the study of STR with fewer labels. In this work, we would like to reactivate STR with fewer labels by disproving the common knowledge. We consolidate recently accumulated public real data and show that we can train STR models satisfactorily only with real labeled data. Subsequently, we find simple data augmentation to fully exploit real data. Furthermore, we improve the models by collecting unlabeled data and introducing semi- and self-supervised methods. As a result, we obtain a competitive model to state-of-the-art methods. To the best of our knowledge, this is the first study that 1) shows sufficient performance by only using real labels and 2) introduces semi- and self-supervised methods into STR with fewer labels. Our code and data are available: https://github.com/ku21fan/STR-Fewer-Labels
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا