ﻻ يوجد ملخص باللغة العربية
One-shot neural architecture search (NAS) applies weight-sharing supernet to reduce the unaffordable computation overhead of automated architecture designing. However, the weight-sharing technique worsens the ranking consistency of performance due to the interferences between different candidate networks. To address this issue, we propose a candidates enhancement method and progressive training pipeline to improve the ranking correlation of supernet. Specifically, we carefully redesign the sub-networks in the supernet and map the original supernet to a new one of high capacity. In addition, we gradually add narrow branches of supernet to reduce the degree of weight sharing which effectively alleviates the mutual interference between sub-networks. Finally, our method ranks the 1st place in the Supernet Track of CVPR2021 1st Lightweight NAS Challenge.
Recently proposed neural architecture search (NAS) methods co-train billions of architectures in a supernet and estimate their potential accuracy using the network weights detached from the supernet. However, the ranking correlation between the archi
A resource-adaptive supernet adjusts its subnets for inference to fit the dynamically available resources. In this paper, we propose Prioritized Subnet Sampling to train a resource-adaptive supernet, termed PSS-Net. We maintain multiple subnet pools,
We propose two well-motivated ranking-based methods to enhance the performance of current state-of-the-art human activity recognition systems. First, as an improvement over the classic power normalization method, we propose a parameter-free ranking t
Computer vision is difficult, partly because the desired mathematical function connecting input and output data is often complex, fuzzy and thus hard to learn. Coarse-to-fine (C2F) learning is a promising direction, but it remains unclear how it is a
We investigate the problem of classifying - from a single image - the level of content in a cup or a drinking glass. This problem is made challenging by several ambiguities caused by transparencies, shape variations and partial occlusions, and by the