ترغب بنشر مسار تعليمي؟ اضغط هنا

Continual Neural Mapping: Learning An Implicit Scene Representation from Sequential Observations

187   0   0.0 ( 0 )
 نشر من قبل Zike Yan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances have enabled a single neural network to serve as an implicit scene representation, establishing the mapping function between spatial coordinates and scene properties. In this paper, we make a further step towards continual learning of the implicit scene representation directly from sequential observations, namely Continual Neural Mapping. The proposed problem setting bridges the gap between batch-trained implicit neural representations and commonly used streaming data in robotics and vision communities. We introduce an experience replay approach to tackle an exemplary task of continual neural mapping: approximating a continuous signed distance function (SDF) from sequential depth images as a scene geometry representation. We show for the first time that a single network can represent scene geometry over time continually without catastrophic forgetting, while achieving promising trade-offs between accuracy and efficiency.



قيم البحث

اقرأ أيضاً

We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shapes, object poses, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of b oth shapes and layout especially for the cluttered scene due to the heavy occlusion between objects. We propose to utilize the latest deep implicit representation to solve this challenge. We not only propose an image-based local structured implicit network to improve the object shape estimation, but also refine the 3D object pose and scene layout via a novel implicit scene graph neural network that exploits the implicit local object features. A novel physical violation loss is also proposed to avoid incorrect context between objects. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of object shape, scene layout estimation, and 3D object detection.
In this work, we aim to address the 3D scene stylization problem - generating stylized images of the scene at arbitrary novel view angles. A straightforward solution is to combine existing novel view synthesis and image/video style transfer approache s, which often leads to blurry results or inconsistent appearance. Inspired by the high quality results of the neural radiance fields (NeRF) method, we propose a joint framework to directly render novel views with the desired style. Our framework consists of two components: an implicit representation of the 3D scene with the neural radiance field model, and a hypernetwork to transfer the style information into the scene representation. In particular, our implicit representation model disentangles the scene into the geometry and appearance branches, and the hypernetwork learns to predict the parameters of the appearance branch from the reference style image. To alleviate the training difficulties and memory burden, we propose a two-stage training procedure and a patch sub-sampling approach to optimize the style and content losses with the neural radiance field model. After optimization, our model is able to render consistent novel views at arbitrary view angles with arbitrary style. Both quantitative evaluation and human subject study have demonstrated that the proposed method generates faithful stylization results with consistent appearance across different views.
With the explosion of digital data in recent years, continuously learning new tasks from a stream of data without forgetting previously acquired knowledge has become increasingly important. In this paper, we propose a new continual learning (CL) sett ing, namely ``continual representation learning, which focuses on learning better representation in a continuous way. We also provide two large-scale multi-step benchmarks for biometric identification, where the visual appearance of different classes are highly relevant. In contrast to requiring the model to recognize more learned classes, we aim to learn feature representation that can be better generalized to not only previously unseen images but also unseen classes/identities. For the new setting, we propose a novel approach that performs the knowledge distillation over a large number of identities by applying the neighbourhood selection and consistency relaxation strategies to improve scalability and flexibility of the continual learning model. We demonstrate that existing CL methods can improve the representation in the new setting, and our method achieves better results than the competitors.
Contrastive self-supervised learning has largely narrowed the gap to supervised pre-training on ImageNet. However, its success highly relies on the object-centric priors of ImageNet, i.e., different augmented views of the same image correspond to the same object. Such a heavily curated constraint becomes immediately infeasible when pre-trained on more complex scene images with many objects. To overcome this limitation, we introduce Object-level Representation Learning (ORL), a new self-supervised learning framework towards scene images. Our key insight is to leverage image-level self-supervised pre-training as the prior to discover object-level semantic correspondence, thus realizing object-level representation learning from scene images. Extensive experiments on COCO show that ORL significantly improves the performance of self-supervised learning on scene images, even surpassing supervised ImageNet pre-training on several downstream tasks. Furthermore, ORL improves the downstream performance when more unlabeled scene images are available, demonstrating its great potential of harnessing unlabeled data in the wild. We hope our approach can motivate future research on more general-purpose unsupervised representation learning from scene data. Project page: https://www.mmlab-ntu.com/project/orl/.
In this paper, we present a novel implicit glyph shape representation, which models glyphs as shape primitives enclosed by quadratic curves, and naturally enables generating glyph images at arbitrary high resolutions. Experiments on font reconstructi on and interpolation tasks verified that this structured implicit representation is suitable for describing both structure and style features of glyphs. Furthermore, based on the proposed representation, we design a simple yet effective disentangled network for the challenging one-shot font style transfer problem, and achieve the best results comparing to state-of-the-art alternatives in both quantitative and qualitative comparisons. Benefit from this representation, our generated glyphs have the potential to be converted to vector fonts through post-processing, reducing the gap between rasterized images and vector graphics. We hope this work can provide a powerful tool for 2D shape analysis and synthesis, and inspire further exploitation in implicit representations for 2D shape modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا