ﻻ يوجد ملخص باللغة العربية
Lane-changing (LC) behavior describes the lateral movement of the vehicle from the current-lane to the target-lane while proceeding forward. Among the many research directions, LC duration (LCD) measures the total time it takes for a vehicle to travel from the current lane to the target lane, which is an indispensable indicator to characterize the LC behavior. Although existing research has made some achievements, less attention has been paid to the research of heavy vehicles LCD. Therefore, this paper aims to further explore the LCD between heavy vehicles and passenger cars. LC trajectories are extracted from the newly-released HighD dataset, which contains of 16.5 hours of measurement and over 11,000 vehicles. The survival function of LCD has been estimated, and the characteristic has been analyzed. Thereafter, the Accelerated Failure Time model is introduced to explore the influencing factors. Results demonstrate that the MST value of passenger cars and heavy vehicles is about 5.51s and 6.08s. The heavy vehicles would maintain a longer time-headway and distance-headway with preceding vehicle when performing LC. Nevertheless, these two factors do not significantly affect the LCD of heavy vehicles. Finally, the results and the modeling implications have been discussed. We hope this paper could contribute to our further understanding of the LC behaviors for heavy vehicles and passenger cars.
Emergency vehicle (EMV) service is a key function of cities and is exceedingly challenging due to urban traffic congestion. A main reason behind EMV service delay is the lack of communication and cooperation between vehicles blocking EMVs. In this pa
Autonomous vehicles bring the promise of enhancing the consumer experience in terms of comfort and convenience and, in particular, the safety of the autonomous vehicle. Safety functions in autonomous vehicles such as Automatic Emergency Braking and L
Lane change is a very demanding driving task and number of traffic accidents are induced by mistaken maneuvers. An automated lane change system has the potential to reduce driver workload and to improve driving safety. One challenge is how to improve
In order to minimize the impact of LC (lane-changing) maneuver, this research proposes a novel LC algorithm in mixed traffic. The LC maneuver is parsed into two stages: one is from the decision point to the execution point (finding a suitable gap), a
Non-signalized intersection is a typical and common scenario for connected and automated vehicles (CAVs). How to balance safety and efficiency remains difficult for researchers. To improve the original Responsibility Sensitive Safety (RSS) driving st