ﻻ يوجد ملخص باللغة العربية
Convolutional neural network (CNN) is one of the most widely-used successful architectures in the era of deep learning. However, the high-computational cost of CNN still hampers more universal uses to light devices. Fortunately, the Fourier transform on convolution gives an elegant and promising solution to dramatically reduce the computation cost. Recently, some studies devote to such a challenging problem and pursue the complete frequency computation without any switching between spatial domain and frequent domain. In this work, we revisit the Fourier transform theory to derive feed-forward and back-propagation frequency operations of typical network modules such as convolution, activation and pooling. Due to the calculation limitation of complex numbers on most computation tools, we especially extend the Fourier transform to the Laplace transform for CNN, which can run in the real domain with more relaxed constraints. This work more focus on a theoretical extension and discussion about frequency CNN, and lay some theoretical ground for real application.
Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural
Spiking neural networks (SNNs) are promising in a bio-plausible coding for spatio-temporal information and event-driven signal processing, which is very suited for energy-efficient implementation in neuromorphic hardware. However, the unique working
Transformers have been recently adapted for large scale image classification, achieving high scores shaking up the long supremacy of convolutional neural networks. However the optimization of image transformers has been little studied so far. In this
In this work we introduce Lean Point Networks (LPNs) to train deeper and more accurate point processing networks by relying on three novel point processing blocks that improve memory consumption, inference time, and accuracy: a convolution-type block
In a hostile environment, interference identification plays an important role in protecting the authorized communication system and avoiding its performance degradation. In this paper, the interference identification problem for the frequency hopping