ترغب بنشر مسار تعليمي؟ اضغط هنا

A new class of copula regression models for modelling multivariate heavy-tailed data

62   0   0.0 ( 0 )
 نشر من قبل Zhengxiao Li
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A new class of copulas, termed the MGL copula class, is introduced. The new copula originates from extracting the dependence function of the multivariate generalized log-Moyal-gamma distribution whose marginals follow the univariate generalized log-Moyal-gamma (GLMGA) distribution as introduced in citet{li2019jan}. The MGL copula can capture nonelliptical, exchangeable, and asymmetric dependencies among marginal coordinates and provides a simple formulation for regression applications. We discuss the probabilistic characteristics of MGL copula and obtain the corresponding extreme-value copula, named the MGL-EV copula. While the survival MGL copula can be also regarded as a special case of the MGB2 copula from citet{yang2011generalized}, we show that the proposed model is effective in regression modelling of dependence structures. Next to a simulation study, we propose two applications illustrating the usefulness of the proposed model. This method is also implemented in a user-friendly R package: texttt{rMGLReg}.

قيم البحث

اقرأ أيضاً

Various parametric models have been developed to predict large volatility matrices, based on the approximate factor model structure. They mainly focus on the dynamics of the factor volatility with some finite high-order moment assumptions. However, t he empirical studies have shown that the idiosyncratic volatility also has a dynamic structure and it comprises a large proportion of the total volatility. Furthermore, we often observe that the financial market exhibits heavy tails. To account for these stylized features in financial returns, we introduce a novel It^{o} diffusion process for both factor and idiosyncratic volatilities whose eigenvalues follow the vector auto-regressive (VAR) model. We call it the factor and idiosyncratic VAR-It^{o} (FIVAR-It^o) model. To handle the heavy-tailedness and curse of dimensionality, we propose a robust parameter estimation method for a high-dimensional VAR model. We apply the robust estimator to predicting large volatility matrices and investigate its asymptotic properties. Simulation studies are conducted to validate the finite sample performance of the proposed estimation and prediction methods. Using high-frequency trading data, we apply the proposed method to large volatility matrix prediction and minimum variance portfolio allocation and showcase the new model and the proposed method.
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decom positions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. We introduce a notion of conditional independence b etween random functions, and construct a framework for Bayesian inference of undirected, decomposable graphs in the multivariate functional data context. This framework is based on extending Markov distributions and hyper Markov laws from random variables to random processes, providing a principled alternative to naive application of multivariate methods to discretized functional data. Markov properties facilitate the composition of likelihoods and priors according to the decomposition of a graph. Our focus is on Gaussian process graphical models using orthogonal basis expansions. We propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite coefficient sequences of the basis expansion, establish existence, uniqueness, strong hyper Markov property, and conjugacy. Stochastic search Markov chain Monte Carlo algorithms are developed for posterior inference, assessed through simulations, and applied to a study of brain activity and alcoholism.
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covari ance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covariance structure simultaneously. The CGP enables the model to define different covariance structure for each component of the response variables. This flexibility ensures the model to cope with data coming from different resources or having different data structures, and thus to provide accurate estimation and prediction. In addition, the model is able to accommodate large-dimensional covariates. The definition of the model, the inference and the implementation, as well as its asymptotic properties, are discussed. Comprehensive numerical examples with both simulation studies and real data are presented.
Multivariate space-time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space-time dependencies. Under the Gaussian framework, one needs to propose re levant models for multivariate space-time covariance functions, i.e. matrix-valued mappings with the additional requirement of non-negative definiteness. We propose a flexible parametric class of cross-covariance functions for multivariate space-time Gaussian random fields. Space-time components belong to the (univariate) Gneiting class of space-time covariance functions, with Matern or Cauchy covariance functions in the spatial margins. The smoothness and scale parameters can be different for each variable. We provide sufficient conditions for positive definiteness. A simulation study shows that the parameters of this model can be efficiently estimated using weighted pairwise likelihood, which belongs to the class of composite likelihood methods. We then illustrate the model on a French dataset of weather variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا