ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Interpretable Deep Networks for Monocular Depth Estimation

367   0   0.0 ( 0 )
 نشر من قبل Guanbin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep networks for Monocular Depth Estimation (MDE) have achieved promising performance recently and it is of great importance to further understand the interpretability of these networks. Existing methods attempt to provide posthoc explanations by investigating visual cues, which may not explore the internal representations learned by deep networks. In this paper, we find that some hidden units of the network are selective to certain ranges of depth, and thus such behavior can be served as a way to interpret the internal representations. Based on our observations, we quantify the interpretability of a deep MDE network by the depth selectivity of its hidden units. Moreover, we then propose a method to train interpretable MDE deep networks without changing their original architectures, by assigning a depth range for each unit to select. Experimental results demonstrate that our method is able to enhance the interpretability of deep MDE networks by largely improving the depth selectivity of their units, while not harming or even improving the depth estimation accuracy. We further provide a comprehensive analysis to show the reliability of selective units, the applicability of our method on different layers, models, and datasets, and a demonstration on analysis of model error. Source code and models are available at https://github.com/youzunzhi/InterpretableMDE .

قيم البحث

اقرأ أيضاً

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a cameras aperture as supervision. Prior works use a depth sensors outputs or images of the same scene f rom alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.
Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on feature correspondences of multiple viewpoints. Meanwhile, the predicted depth maps are sparse. Inferring depth information from a single image (monocular depth estimation) is an ill-posed problem. With the rapid development of deep neural networks, monocular depth estimation based on deep learning has been widely studied recently and achieved promising performance in accuracy. Meanwhile, dense depth maps are estimated from single images by deep neural networks in an end-to-end manner. In order to improve the accuracy of depth estimation, different kinds of network frameworks, loss functions and training strategies are proposed subsequently. Therefore, we survey the current monocular depth estimation methods based on deep learning in this review. Initially, we conclude several widely used datasets and evaluation indicators in deep learning-based depth estimation. Furthermore, we review some representative existing methods according to different training manners: supervised, unsupervised and semi-supervised. Finally, we discuss the challenges and provide some ideas for future researches in monocular depth estimation.
Self-supervised learning for monocular depth estimation is widely investigated as an alternative to supervised learning approach, that requires a lot of ground truths. Previous works have successfully improved the accuracy of depth estimation by modi fying the model structure, adding objectives, and masking dynamic objects and occluded area. However, when using such estimated depth image in applications, such as autonomous vehicles, and robots, we have to uniformly believe the estimated depth at each pixel position. This could lead to fatal errors in performing the tasks, because estimated depth at some pixels may make a bigger mistake. In this paper, we theoretically formulate a variational model for the monocular depth estimation to predict the reliability of the estimated depth image. Based on the results, we can exclude the estimated depths with low reliability or refine them for actual use. The effectiveness of the proposed method is quantitatively and qualitatively demonstrated using the KITTI benchmark and Make3D dataset.
In this paper, we propose a Bidirectional Attention Network (BANet), an end-to-end framework for monocular depth estimation (MDE) that addresses the limitation of effectively integrating local and global information in convolutional neural networks. The structure of this mechanism derives from a strong conceptual foundation of neural machine translation, and presents a light-weight mechanism for adaptive control of computation similar to the dynamic nature of recurrent neural networks. We introduce bidirectional attention modules that utilize the feed-forward feature maps and incorporate the global context to filter out ambiguity. Extensive experiments reveal the high degree of capability of this bidirectional attention model over feed-forward baselines and other state-of-the-art methods for monocular depth estimation on two challenging datasets -- KITTI and DIODE. We show that our proposed approach either outperforms or performs at least on a par with the state-of-the-art monocular depth estimation methods with less memory and computational complexity.
112 - Rongrong Ji , Ke Li , Yan Wang 2019
In this paper, we address the problem of monocular depth estimation when only a limited number of training image-depth pairs are available. To achieve a high regression accuracy, the state-of-the-art estimation methods rely on CNNs trained with a lar ge number of image-depth pairs, which are prohibitively costly or even infeasible to acquire. Aiming to break the curse of such expensive data collections, we propose a semi-supervised adversarial learning framework that only utilizes a small number of image-depth pairs in conjunction with a large number of easily-available monocular images to achieve high performance. In particular, we use one generator to regress the depth and two discriminators to evaluate the predicted depth , i.e., one inspects the image-depth pair while the other inspects the depth channel alone. These two discriminators provide their feedbacks to the generator as the loss to generate more realistic and accurate depth predictions. Experiments show that the proposed approach can (1) improve most state-of-the-art models on the NYUD v2 dataset by effectively leveraging additional unlabeled data sources; (2) reach state-of-the-art accuracy when the training set is small, e.g., on the Make3D dataset; (3) adapt well to an unseen new dataset (Make3D in our case) after training on an annotated dataset (KITTI in our case).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا