ﻻ يوجد ملخص باللغة العربية
A comprehensive and detailed overview of the flow topology over a cambered NACA 65(1)-412 airfoil at Re = 20,000 is presented for angles of attack ranging from 0{deg} to 10{deg} using high-order direct numerical simulations. It is shown that instabilities bifurcate the flow and cause it to change at a critical angle of attack from laminar separation without reattachment over a laminar separation bubble at the trailing edge to a bubble at the leading edge. The transition of the flow regimes is governed by the Karman vortex shedding of the pressure side boundary layer at the trailing edge, Kelvin-Helmholtz instabilities within the separated shear layer on the suction side, as well as three-dimensional instabilities of elliptic flow within the vortex cores and hyperbolic flow in the shear layer between subsequent Karman vortices. As the suction side shear layer transitions and reattaches, the interaction of the two and three-dimensional instabilities results in three-dimensional tubular structures and large-scale turbulent puffs. The formation and shifting of the laminar separation bubble defines the far-wake topology several chord-lengths behind the airfoil and is accompanied by a sudden increase of the lift force and decrease in the drag that underscores the sensitive nature of low-Reynolds number airfoil aerodynamics. Lift and drag polars are presented for direct numerical simulations, wind tunnel experiments, and simplified numerical procedures where incorrect prediction of the force coefficients is caused by the failure to correctly model the low-pressure region at the trailing edge that is caused by the time-dependent generation of the Karman vortices.
Rod bundle flows are prevalent in nuclear engineering for both light water reactors (LWR) and advanced reactor concepts. Unlike canonical channel flow, the flow in rod bundles presents some unique characteristics, notably due to the inhomogeneous cro
Results of direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations are presented. For the first time simultaneous formation of both direct and inverse cascades was observed in the framewo
A new type of instability - electrokinetic instability - and an unusual transition to chaotic motion near a charge-selective surface was studied by numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near
The efficient mixing of fluids is key in many applications, such as chemical reactions and nanoparticle precipitation. Detailed experimental measurements of the mixing dynamics are however difficult to obtain, and so predictive numerical tools are he
A direct numerical simulation (DNS) of a channel flow with one curved surface was performed at moderate Reynolds number (Re_tau = 395 at the inlet). The adverse pressure gradient was obtained by a wall curvature through a mathematical mapping from ph