ﻻ يوجد ملخص باللغة العربية
An exact Kerr-like solution has been obtained recently in Einstein-bumblebee gravity model where Lorentz symmetry is spontaneously broken. In this paper, we investigate the superradiance instability of the Kerr-like black hole under the perturbation of a massive scalar field. We find the Lorentz breaking parameter $L$ affects superradiance regime but not the regime of the bound states. We calculate the bound state spectrum via the continued-fraction method and show the influence of $L$ on the maximum binding energy and the damping rate. The superradiance instability could occur since the superradiance condition and the bound state condition could be both satisfied. Compared with Kerr black hole, the nature of the superradiance instability of this black hole depends non-monotonously not only on the rotation speed of the black hole $a$ and the product of the black hole mass $M$ and the field mass $mu$, but also on the Lorentz breaking parameter $L$. Through the Monte Carlo method, we find that for $l=m=1$ state the most unstable mode occurs at $L=-0.79637$, $a/M=2.213$ and $Mmu=0.439$, with the maximum growth rate of the field $omega_{I}M=1.676times10^{-6}$, which is about 10 times of that in Kerr black hole.
In the Einstein-bumblebee gravity, the Lorentz symmetry is spontaneously broken by a vector field. In this paper, we attempt to test the Lorentz symmetry via the observation of the shadow cast by the Kerr-like black hole with or without plasma. A nov
Recent strong-field regime tests of gravity are so far in agreement with general relativity. In particular, astrophysical black holes appear all to be consistent with the Kerr spacetime, but the statistical error on current observations allows for sm
Ongoing observations in the strong-field regime are in optimal agreement with general relativity, although current errors still leave room for small deviations from Einsteins theory. Here we summarise our recent results on superradiance of scalar and
Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on
We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We sh