ﻻ يوجد ملخص باللغة العربية
For smooth convex disks $A$, i.e., convex compact subsets of the plane with non-empty interior, we classify the classes $G^{text{hom}}(A)$ and $G^{text{sim}}(A)$ of intersection graphs that can be obtained from homothets and similarities of $A$, respectively. Namely, we prove that $G^{text{hom}}(A)=G^{text{hom}}(B)$ if and only if $A$ and $B$ are affine equivalent, and $G^{text{sim}}(A)=G^{text{sim}}(B)$ if and only if $A$ and $B$ are similar.
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in $RR^n$.
We consider asymmetric convex intersection testing (ACIT). Let $P subset mathbb{R}^d$ be a set of $n$ points and $mathcal{H}$ a set of $n$ halfspaces in $d$ dimensions. We denote by $text{ch}(P)$ the polytope obtained by taking the convex hull of $
A conflict-free $k$-coloring of a graph $G=(V,E)$ assigns one of $k$ different colors to some of the vertices such that, for every vertex $v$, there is a color that is assigned to exactly one vertex among $v$ and $v$s neighbors. Such colorings have a
Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest p
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum num