ﻻ يوجد ملخص باللغة العربية
The relative significance of quantum conductivity correction and magnetic nature of electrons in understanding the intriguing low-temperature resistivity minimum and negative magnetoresistance of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces has been a long outstanding issue since its discovery. Here we report a comparative magnetotransport study on amorphous and oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures at a relatively high-temperature range, where the orbital scattering is largely suppressed by thermal fluctuations. Despite of a predominantly negative out-of-plane magnetoresistance effect for both, the magnetotransport is isotropic for amorphous LaAlO3/SrTiO3 while strongly anisotropic and well falls into a two-dimensional quantum correction frame for annealed crystalline LaAlO3/SrTiO3. These results clearly indicate that a large portion of electrons from oxygen vacancies are localized at low temperatures, serving as magnetic centers, while the electrons from the polar field are only weakly localized due to constructive interference between time-reversed electron paths in the clean limit and no signature of magnetic nature is visible.
We report that in unannealed LaAlO3/SrTiO3 (LAO/STO) heterostructures the critical thickness for the appearance of the two-dimensional electron gas can be less than 4 unit cell (uc), the interface is conducting even for STO substrates with mixed term
We formulate a model for magnetic and superconducting ordering at LaAlO3/SrTiO3 interfaces containing both localized magnetic moments and itinerant electrons. Though these both originate in Ti 3d orbitals, the former may be due to electrons more tigh
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl
The so-called polar catastrophe, a sudden electronic reconstruction taking place to compensate for the interfacial ionic polar discontinuity, is currently considered as a likely factor to explain the surprising conductivity of the interface between t
Electronic phase separation is crucial for the fascinating macroscopic properties of the LaAlO3/SrTiO3 (LAO/STO) paradigm oxide interface, including the coexistence of superconductivity and ferromagnetism. We investigate this phenomenon using angle-r