ﻻ يوجد ملخص باللغة العربية
By amalgamating recent communication and control technologies, computing and data analytics techniques, and modular manufacturing, Industry~4.0 promotes integrating cyber-physical worlds through cyber-physical systems (CPS) and digital twin (DT) for monitoring, optimization, and prognostics of industrial processes. A DT is an emerging but conceptually different construct than CPS. Like CPS, DT relies on communication to create a highly-consistent, synchronized digital mirror image of the objects or physical processes. DT, in addition, uses built-in models on this precise image to simulate, analyze, predict, and optimize their real-time operation using feedback. DT is rapidly diffusing in the industries with recent advances in the industrial Internet of things (IIoT), edge and cloud computing, machine learning, artificial intelligence, and advanced data analytics. However, the existing literature lacks in identifying and discussing the role and requirements of these technologies in DT-enabled industries from the communication and computing perspective. In this article, we first present the functional aspects, appeal, and innovative use of DT in smart industries. Then, we elaborate on this perspective by systematically reviewing and reflecting on recent research in next-generation (NextG) wireless technologies (e.g., 5G and beyond networks), various tools (e.g., age of information, federated learning, data analytics), and other promising trends in networked computing (e.g., edge and cloud computing). Moreover, we discuss the DT deployment strategies at different industrial communication layers to meet the monitoring and control requirements of industrial applications. We also outline several key reflections and future research challenges and directions to facilitate industrial DTs adoption.
Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the
Industrial processes rely on sensory data for critical decision-making processes. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the trustworthiness of data. To this end, we envision a blockchain-ba
This paper surveys and unifies a number of recent contributions that have collectively developed a metric for decentralized wireless network analysis known as transmission capacity. Although it is notoriously difficult to derive general end-to-end ca
Digital Twin (DT) is a promising technology for the new immersive digital life with a variety of applications in areas such as Industry 4.0, aviation, and healthcare. Proliferation of this technology requires higher data rates, reliability, resilienc
With the rapid enhancement of computer computing power, deep learning methods, e.g., convolution neural networks, recurrent neural networks, etc., have been applied in wireless network widely and achieved impressive performance. In recent years, in o