ترغب بنشر مسار تعليمي؟ اضغط هنا

The first nova eruption in a novalike variable: YZ Ret as seen in X-rays and gamma-rays

90   0   0.0 ( 0 )
 نشر من قبل Kirill Sokolovsky
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Peaking at 3.7 mag on 2020 July 11, YZ Ret was the second-brightest nova of the decade. The novas moderate proximity (2.7 kpc from Gaia) provided an opportunity to explore its multi-wavelength properties in great detail. Here we report on YZ Ret as part of a long-term project to identify the physical mechanisms responsible for high-energy emission in classical novae. We use simultaneous Fermi/LAT and NuSTAR observations complemented by XMM-Newton X-ray grating spectroscopy to probe the physical parameters of the shocked ejecta and the nova-hosting white dwarf. The XMM-Newton observations revealed a super-soft X-ray emission which is dominated by emission lines of CV, CVI, NVI, NVII, and OVIII rather than a blackbody-like continuum, suggesting CO-composition of the white dwarf in a high-inclination binary system. Fermi/LAT detected YZ Ret for 15 days with the gamma-ray spectrum best described by a power law with an exponential cut-off at 1.9 +/-0.6 GeV. In stark contrast with theoretical predictions and in keeping with previous NuSTAR observations of Fermi-detected classical novae (V5855 Sgr and V906 Car), the 3.5-78 keV X-ray emission is found to be two orders of magnitude fainter than the GeV emission. The X-ray emission observed by NuSTAR is consistent with a single-temperature thermal plasma. We detect no non-thermal tail of the GeV emission expected to extend down to the NuSTAR band. NuSTAR observations continue to challenge theories of high-energy emission from shocks in novae.

قيم البحث

اقرأ أيضاً

We report the first detection of hard (>10 keV) X-ray emission simultaneous with gamma rays in a nova eruption. Observations of the nova V5855 Sgr carried out with the NuSTAR satellite on Day 12 of the eruption revealed faint, highly absorbed thermal X-rays. The extreme equivalent hydrogen column density towards the X-ray emitting region (~3 x 10$^{24}$ cm$^{-2}$) indicates that the shock producing the X-rays was deeply embedded within the nova ejecta. The slope of the X-ray spectrum favors a thermal origin for the bulk of the emission, and the constraints of the temperature in the shocked region suggest a shock velocity compatible with the ejecta velocities inferred from optical spectroscopy. While we do not claim the detection of non-thermal X-rays, the data do not allow us to rule out an additional, fainter component dominating at energy above 20 keV, for which we obtained upper limits. The inferred luminosity of the thermal X-rays is too low to be consistent with the gamma-ray luminosities if both are powered by the same shock under standard assumptions regarding the efficiency of non-thermal particle acceleration and the temperature distribution of the shocked gas.
BL Lac objects are an extreme type of active galactic nuclei (AGNs) that belong to the largest population of $gamma$-ray sources: blazars. This class of AGNs shows a double-bumped spectral energy distribution that is commonly described in terms of a synchrotron self-Compton (SSC) emission process, whereas the low-energy component that dominates their emission between the infrared and the X-ray band is tightly connected to the high-energy component that peaks in the $gamma$-rays. Two strong connections that link radio and mid-infrared emission of blazars to the emission in the $gamma$-ray band are well established. They constitute the basis for associating $gamma$-ray sources with their low-energy counterparts. We searched for a possible link between X-ray and $gamma$-ray emissions for the subclass of BL Lacs using all archival Swift/XRT observations combined with Fermi data for a selected sample of 351 sources. Analyzing $sim$2400 ks of Swift/XRT observations that were carried out until December 2018, we discovered that above the $gamma$-ray flux threshold $F_{gamma}approx3times10^{-12},rm{erg},rm{cm}^{-2},rm{s}^{-1}$, 96% of all emph{Fermi} BL Lacs have an X-ray counterpart that is detected with signal-to-noise ratio higher than 3. We did not find any correlation or clear trend between X-ray and $gamma$-ray fluxes and/or spectral shapes, but we discovered a correlation between the X-ray flux and the mid-infrared color. Finally, we discuss on a possible interpretation of our results in the SSC framework.
We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ~0.1-1 EeV and possibly beyond, with a hard spectral index Gamma ~ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ~ 10 % of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by CTA. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ~ 20-60 % of the isotropic background detected by IceCube.
Massive stellar clusters have recently been hypothesised as candidates for the acceleration of hadronic cosmic rays up to PeV energies. Previously, the H.E.S.S. Collaboration has reported about very extended $gamma$-ray emission around Westerlund 1, a massive young stellar cluster in the Milky Way. In this contribution we present an updated analysis that employs a new analysis technique and is based on a much larger data set, allowing us to constrain better the morphology and the energy spectrum of the emission. The analysis technique used is a three-dimensional likelihood analysis, which is especially well suited for largely extended sources. The origin of the $gamma$-ray emission will be discussed in light of multi-wavelength observations.
NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the non-thermal component in the gamma-rays. For the thermal process, we obtain a photon index of Gamma=1.6, a cut-off energy of Ec ~ 150 keV and a hydrogen column density of NH = 6e24 1/cm**2. The non-thermal process has a photon index of Gamma=2.0 and a flux of F(0.1-100 GeV) = 1.4e-11 erg/cm**2/sec. The spectral energy distribution gives a total unabsorbed flux of F(2 keV - 100 GeV) = 5e-10 erg/cm**2/sec and a luminosity of L(2 keV - 100 GeV) = 9e41 erg/sec at a distance of 3.7 Mpc. It appears more reasonable that the gamma-ray emission is independent from the AGN and could be caused e.g. by shock processes in the starburst regions of the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا