ﻻ يوجد ملخص باللغة العربية
Eigenvector continuation has recently attracted a lot attention in nuclear structure and reactions as a variational resummation tool for many-body expansions. While previous applications focused on ground-state energies, excited states can be accessed on equal footing. This work is dedicated to a detailed understanding of the emergence of excited states from the eigenvector continuation approach. For numerical applications the one-dimensional quartic anharmonic oscillator is investigated, which represents a strongly non-perturbative quantum system where the use of standard perturbation techniques break down. We discuss how different choices for the construction of the EC manifold affect the quality of the EC resummation and investigate in detail the results from EC for excited states compared to results from a full diagonalization as a function of the basis space size.
A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not possible. There are numerous efficient metho
We construct an efficient emulator for two-body scattering observables using the general (complex) Kohn variational principle and trial wave functions derived from eigenvector continuation. The emulator simultaneously evaluates an array of Kohn varia
Out-of-time-ordered correlators (OTOCs) have been suggested as a means to study quantum chaotic behavior in various systems. In this work, I calculate OTOCs for the quantum mechanical anharmonic oscillator with quartic potential, which is classically
An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of
The configuration interaction method, which is well-known as the shell-model calculation in the nuclear physics community, plays a key role in elucidating various properties of nuclei. In general, these studies require a huge number of shell-model ca