ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitatively Predicting Modal Thermal Conductivity of Nanocrystalline Si by full band Monte Carlo simulations

170   0   0.0 ( 0 )
 نشر من قبل Lina Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal transport of nanocrystalline Si is of great importance for the application of thermoelectrics. A better understanding of the modal thermal conductivity of nanocrystalline Si will be expected to benefit the efficiency of thermoelectrics. In this work, the variance reduced Monte Carlo simulation with full band of phonon dispersion is applied to study the modal thermal conductivity of nanocrystalline Si. Importantly, the phonon modal transmissions across the grain boundaries which are modeled by the amorphous Si interface are calculated by the mode-resolved atomistic Greens function method. The predicted ratios of thermal conductivity of nanocrystalline Si to that of bulk Si agree well with that of the experimental measurements in a wide range of grain size. The thermal conductivity of nanocrystalline Si is decreased from 54 percent to 3 percent and the contribution of phonons with mean free path larger than the grain size increases from 30 percent to 96 percnet as the grain size decreases from 550 nm to 10 nm. This work demonstrates that the full band Monte Carlo simulation using phonon modal transmission by the mode-resolved atomistic Greens function method can capture the phonon transport picture in complex nanostructures, and therefore can provide guidance for designing high performance Si based thermoelectrics.


قيم البحث

اقرأ أيضاً

Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this paper, we investigate the band structure-related mechanisms that influence impact ionization. Band-structures calculated using an empirical tigh t-binding method and Monte Carlo simulations reveal that the mini-gaps in the conduction band do not inhibit electron impact ionization. Good agreement between the full band Monte Carlo simulations and measured noise characteristics is demonstrated.
Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic d evices. In particular, the anisotropic growth of transition metal dichalcogenides induced by the substrate is of great interest due to its operability. To date, however, their substrate-induced anisotropic growth is typically driven by the optimization of experimental parameters without uncovering the fundamental mechanism. Here, the anisotropic growth of monolayer tungsten disulfide on an ST-X quartz substrate is achieved by chemical vapor deposition, and the mechanism of substrate-induced anisotropic growth is examined by kinetic Monte Carlo simulations. These results show that, besides the variation of substrate adsorption, the chalcogen to metal (C/M) ratio is a major contributor to the large growth anisotropy and the polarization of undergrowth and overgrowth; either perfect isotropy or high anisotropy can be expected when the C/M ratio equals 2.0 by properly controlling the linear relationship between gas flux and temperature.
208 - P. Kocan 2004
A growth model and parameters obtained in our previous experimental (scanning tunneling microscopy, KMC) and theoretical (kinetic Monte Carlo simulations, KMC) studies of Ag/Si(111)-(7x7) heteroepitaxy were used to optimise growth conditions (tempera ture and deposition rate) for the most ordered self-organized growth of Ag island arrays on the (7x7) reconstructed surface. The conditions were estimated by means of KMC simulations using the preference in occupation of half unit cells (HUCs) of F-type as a criterion of island ordering. Morphology of experimentally prepared island structures was studied by STM. High degree of experimentally obtained island ordering is compared with the simulated data and results are discussed with respect to the model and parameters used at the KMC simulations.
In this paper we investigate warm electron injection in a double gate SONOS memory by means of 2D full-band Monte Carlo simulations of the Boltzmann Transport Equation (BTE). Electrons are accelerated in the channel by a drain-to-source voltage VDS s maller than 3 V, so that programming occurs via electrons tunneling through a potential barrier whose height has been effectively reduced by the accumulated kinetic energy. Particle energy distribution at the semiconductor/oxide interface is studied for different bias conditions and different positions along the channel. The gate current is calculated with a continuum-based post-processing method as a function of the particle distribution obtained from Monte Carlo. Simulation results show that the gate current increases by several orders of magnitude with increasing drain bias and warm electron injection can be an interesting option for programming when short channel effects prohibit the application of larger drain bias.
Cubic hafnia (HfO$_2$) is of great interest for a number of applications in electronics because of its high dielectric constant. However, common defects in such applications degrade the properties of hafina. We have investigated the electronic proper ties of oxygen vacancies and nitrogen substitution in cubic HfO$_2$ using first principles calculations based on density functional theory (DFT) and many-body diffusion Monte Carlo (DMC) methods. We investigate five different charge defect states of oxygen vacancies, as well as substitutional N defects which can lead to local magnetic moments. Both DMC and DFT calculations shows that an oxygen vacancy induces strong lattice relaxations around the defect. Finally, we compare defect formation energies, charge and spin densities obtained from DMC with results obtained using DFT. While the obtained formation energies from DMC are 0.6~eV -- 1.5~eV larger than those from GGA+U, the agreement for the most important defects, neutral and positively charged oxygen vacancies, and nitrogen substitutional defect, under oxygen-poor conditions are in reasonably good agreement. Our work confirms that nitrogen can act to passivate cubic hafnia for applications in electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا