ﻻ يوجد ملخص باللغة العربية
Modular flavor symmetries provide us with a new, promising approach to the flavor problem. However, in their original formulation the kinetic terms of the standard model fields do not have a preferred form, thus introducing additional parameters, which limit the predictive power of this scheme. In this work, we introduce the scheme of quasi-eclectic flavor symmetries as a simple fix. These symmetries are the direct product of a modular and a traditional flavor symmetry, which are spontaneously broken to a diagonal modular flavor subgroup. This allows us to construct a version of Feruglios model with the Kaehler terms under control. At the same time, the starting point is reminiscent of what one obtains from explicit string models.
We study the modular symmetry in magnetized D-brane models on $T^2$. Non-Abelian flavor symmetry $D_4$ in the model with magnetic flux $M=2$ (in a certain unit) is a subgroup of the modular symmetry. We also study the modular symmetry in heterotic or
Following the way proposed recently by Hernandez and Smirnov, we seek possible residual symmetries in the quark sector with a focus on the von Dyck groups. We begin with two extreme cases in which both $theta_{13}$ and $theta_{23}$ or only $theta_{13
In this letter we propose a multi-Higgs extension of the standard model with Abelian and non-Abelian discrete symmetries in which the mass matrices of the charged fermions obtained from renormalizable interactions are diagonal. Corrections induced by
We study the spontaneous $CP$ violation through the stabilization of the modulus $tau$ in modular invariant flavor models. The $CP$-invaraiant potentential has the minimum only at ${rm Re}[tau] = 0$ or 1/2. From this prediction, we study $CP$ violati
We develop a general formalism for multiple moduli and their associated modular symmetries. We apply this formalism to an example based on three moduli with finite modular symmetries $S_4^A$, $S_4^B$ and $S_4^C$, associated with two right-handed neut