ﻻ يوجد ملخص باللغة العربية
The impact of an applied electric field on the exchange coupling parameters has been investigated based on first-principles electronic structure calculations by means of the KKR Green function method. The calculations have been performed for a Fe film, free-standing and deposited on two different substrates, having 1 monolayer (ML) thickness to minimize the effect of screening of the electric field typical for metallic systems. By comparing the results for the free-standing Fe ML with those for Fe on the various substrates, we could analyze the origin of the field-induced change of the exchange interactions. Compared to the free-standing Fe ML, in particular rather pronounced changes have been found for the Fe/Pt(111) system due to the localized electronic states at the Fe/Pt interface, which are strongly affected by the electric field and which play an important role for the Fe-Fe exchange interactions.
Polar textures have attracted significant attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second harmonic generation based circular dichroism, we demonstrate deterministic and reversible con
Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single phase material. This phenomenon has the potential to control the magnetic state of a materia
We investigate the impact of mechanical strains and a perpendicular electric field on the electronic and magnetic ground-state properties of two-dimensional monolayer CrI$_3$ using density functional theory. We propose a minimal spin model Hamiltonia
We present the microscopic theory of improper multiferroicity in BiMnO3, which can be summarized as follows: (1) the ferroelectric polarization is driven by the hidden antiferromagnetic order in the otherwise centrosymmetric C2/c structure; (2) the r
We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we fi