ترغب بنشر مسار تعليمي؟ اضغط هنا

Coprime automorphisms of finite groups

102   0   0.0 ( 0 )
 نشر من قبل Cristina Acciarri
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a finite group admitting a coprime automorphism $alpha$ of order $e$. Denote by $I_G(alpha)$ the set of commutators $g^{-1}g^alpha$, where $gin G$, and by $[G,alpha]$ the subgroup generated by $I_G(alpha)$. We study the impact of $I_G(alpha)$ on the structure of $[G,alpha]$. Suppose that each subgroup generated by a subset of $I_G(alpha)$ can be generated by at most $r$ elements. We show that the rank of $[G,alpha]$ is $(e,r)$-bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of $I_G(alpha)$ has odd order, then $[G,alpha]$ has odd order too. Further, if every pair of elements from $I_G(alpha)$ generates a soluble, or nilpotent, subgroup, then $[G,alpha]$ is soluble, or respectively nilpotent.


قيم البحث

اقرأ أيضاً

The main result of the paper is the following theorem. Let $q$ be a prime and $A$ an elementary abelian group of order $q^3$. Suppose that $A$ acts coprimely on a profinite group $G$ and assume that $C_G(a)$ is locally nilpotent for each $ain A^{#}$. Then the group $G$ is locally nilpotent.
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G $ for any $ain A^#$, then $gamma_{r-1}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-1$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $G$ for any $ain A^#$, then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Assuming $rgeq 3$ we prove that if all elements in $gamma_{r-2}(C_G(a))$ are $n$-Engel in $C_G(a)$ for any $ain A^#$, then $gamma_{r-2}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-2$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $C_G(a)$ for any $ain A^#,$ then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Analogue (non-quantitative) results for profinite groups are also obtained.
We classify a large class of small groups of finite Morley rank: $N_circ^circ$-groups which are the infinite analogues of Thompsons $N$-groups. More precisely, we constrain the $2$-structure of groups of finite Morley rank containing a definable, normal, non-soluble, $N_circ^circ$-subgroup.
82 - Arne Van Antwerpen 2017
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph an d wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic $p$-group. Lastly, we note that class-preserving automorphisms of 2-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge.
The minimal base size $b(G)$ for a permutation group $G$, is a widely studied topic in the permutation group theory. Z. Halasi and K. Podoski proved that $b(G)leq 2$ for coprime linear groups. Motivated by this result and the probabilistic method use d by T. C. Burness, M. W. Liebeck and A. Shalev, it was asked by L. Pyber that for coprime linear groups $Gleq GL(V)$, whether there exists a constant $c$ such that the probability of that a random $c$-tuple is a base for $G$ tends to 1 as $|V|toinfty$. While the answer to this question is negative in general, it is positive under the additional assumption that $G$ is even primitive as a linear group. In this paper, we show that almost all $11$-tuples are bases for coprime primitive linear groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا