ﻻ يوجد ملخص باللغة العربية
Small composite objects, known as Janus particles, drive sustained scientific interest primarily targeted at biomedical applications, where such objects act as micro- or nanoscale actuators, carriers, or imaging agents. The major practical challenge is to develop effective methods for manipulation of Janus particles. The available long-range methods mostly rely on chemical reactions or thermal gradients, therefore having mediocre precision and strong dependency on the content and properties of the carrier fluid. To tackle these limitations, we propose the manipulation of Janus particles (here, silica microspheres half-coated with gold) by optical forces in the evanescent field of an optical nanofiber. We find that Janus particles exhibit stronger transverse localization and faster propulsion compared to all-dielectric particles of the same size. The propulsion speed recorded for a 3-$mu$m particle with a 20-nm-thick gold cap averages at 2~$mu$m/s per 1~mW of optical power, reaching 133 body length/s at 200~mW going through the nanofiber.
We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wav
We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 $ pm$ 0.02%, which represents a loss from tapering of 2.6 $,times ,$ 10$^{-5}$ d
We investigate trapping geometries for cold, neutral atoms that can be created in the evanescent field of a tapered optical fibre by combining the fundamental mode with one of the next lowest possible modes, namely the HE21 mode. Counter propagating
Developing angular trapping methods, which will enable optical tweezers to rotate a micronized bead, is of great importance for the studies of biomacromolecules during a wide range of torque-generation processes. Here we report a novel controlled ang
We theoretically investigate the optical force exerted on an isotropic particle illuminated by a superposition of plane waves. We derive explicit analytical expressions for the exerted force up to quadrupolar polarizabilities. Based on these analytic