ﻻ يوجد ملخص باللغة العربية
Edge/Fog computing is a novel computing paradigm that provides resource-limited Internet of Things (IoT) devices with scalable computing and storage resources. Compared to cloud computing, edge/fog servers have fewer resources, but they can be accessed with higher bandwidth and less communication latency. Thus, integrating edge/fog and cloud infrastructures can support the execution of diverse latency-sensitive and computation-intensive IoT applications. Although some frameworks attempt to provide such integration, there are still several challenges to be addressed, such as dynamic scheduling of different IoT applications, scalability mechanisms, multi-platform support, and supporting different interaction models. FogBus2, as a new python-based framework, offers a lightweight and distributed container-based framework to overcome these challenges. In this chapter, we highlight key features of the FogBus2 framework alongside describing its main components. Besides, we provide a step-by-step guideline to set up an integrated computing environment, containing multiple cloud service providers (Hybrid-cloud) and edge devices, which is a prerequisite for any IoT application scenario. To obtain this, a low-overhead communication network among all computing resources is initiated by the provided scripts and configuration files. Next, we provide instructions and corresponding code snippets to install and run the main framework and its integrated applications. Finally, we demonstrate how to implement and integrate several new IoT applications and custom scheduling and scalability policies with the FogBus2 framework.
Spatial Data Infrastructure (SDI) is an important concept for sharing spatial data across the web. With cumulative techniques with spatial cloud computing and fog computing, SDI has the greater potential and has been emerged as a tool for processing,
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of real-time IoT applications. However, due to the mobility of users and a wide range of IoT applications with d
Internet of Things (IoT) has already proven to be the building block for next-generation Cyber-Physical Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive processing, which is not feasible by deployin
We introduce a system for Autonomic Management of Power Consumption in setups that involve Internet of Things (IoT) and Fog Computing. The Central IoT (CIoT) is a Fog Computing based solution to provide advanced orchestration mechanisms to manage dyn
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect