ﻻ يوجد ملخص باللغة العربية
We carry out a search for signatures of cosmological time dilation in the light curves of Gamma Ray Bursts (GRBs), detected by the Neil Gehrels Swift Observatory. For this purpose, we calculate two different durations ($T_{50}$ and $T_{90}$) for a sample of 247 GRBs in the fixed rest frame energy interval of 140-350 keV, similar to Zhang et al. We then carry out a power law-based regression analysis between the durations and redshifts. This search is done using both the unbinned as well as the binned data, where both the weighted mean and the geometric mean was used. For each analysis, we also calculate the intrinsic scatter to determine the tightness of the relation. We find that weighted mean-based binned data for long GRBs and the geometric mean-based binned data is consistent with the cosmological time dilation signature, whereas the analyses using unbinned durations show a very large scatter. We also make our analysis codes and the procedure for obtaining the light curves and estimation of $T_{50}$/$T_{90}$ publicly available.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv
If gamma-ray bursters are at cosmological distances - as suggested by their isotropic distribution on the sky and by their number-intensity relation - then the burst profiles will be stretched in time, by an amount proportional to the redshift, 1 + $
We study the emission observed at energies greater than 100 MeV of 11 Gamma Ray Bursts (GRBs) detected by the Fermi/Large Area Telescope (LAT) until October 2009. The GeV emission has three main properties: (i) its duration is often longer than the d
Recent Swift observations suggest that the traditional long vs. short GRB classification scheme does not always associate GRBs to the two physically motivated model types, i.e. Type II (massive star origin) vs. Type I (compact star origin). We propos
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the I