ﻻ يوجد ملخص باللغة العربية
In this paper we present RELXILLDGRAD_NK, a relativistic reflection model in which the electron density of the accretion disk is allowed to have a radial power-law profile. The ionization parameter has also a non-constant radial profile and is calculated self-consistently from the electron density and the emissivity. We show the impact of the implementation of the electron density gradient in our model by analyzing a NuSTAR spectrum of the Galactic black hole in EXO 1846-031 during its last outburst in 2019 and a putative future observation of the same source with Athena and eXTP. For the NuSTAR spectrum, we find that the new model provides a better fit, but there is no significant difference in the estimation of the model parameters. For the Athena+eXTP simulation, we find that a model without a disk density profile is unsuitable to test the spacetime metric around the compact object, in the sense that modeling uncertainties can incorrectly lead to finding a non-vanishing deformation from the Kerr solution.
Very steep reflection emissivity profiles in the inner part of accretion disks are commonly found in the analysis of X-ray observations of black hole binaries and AGN, but there is some debate about their exact origin. While steep reflection emissivi
We present the analysis of several observations of the black hole binary GX 339--4 during its bright intermediate states from two different outbursts (2002 and 2004), as observed by RXTE/PCA. We perform a consistent study of its reflection spectrum b
Relativistic reflection features in the X-ray spectra of black hole binaries and AGNs are thought to be produced through illumination of a cold accretion disk by a hot corona. In this work, we assume that the corona has the shape of an infinitesimall
The 2017 detection of the inspiral and merger of two neutron stars in gravitational waves and gamma rays was accompanied by a quickly-reddening transient. Such a transient was predicted to occur following a rapid neutron capture (r-process) nucleosyn
In a previous paper, we presented an extension of our reflection model RELXILL_NK to include the finite thickness of the accretion disk following the prescription in Taylor & Reynolds (2018). In this paper, we apply our model to fit the 2013 simultan