ترغب بنشر مسار تعليمي؟ اضغط هنا

Scrutinizing $GW$-based methods using the Hubbard dimer

294   0   0.0 ( 0 )
 نشر من قبل Pierre-Fran\\c{c}ois Loos Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the simple (symmetric) Hubbard dimer, we analyze some important features of the $GW$ approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot $GW$ method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard $GW$ approximation and find, in particular, that i) some neutral excitation energies become complex when the electron-electron interaction $U$ increases, which can be traced back to the approximate nature of the $GW$ quasiparticle energies; ii) the BSE formalism yields accurate correlation energies over a wide range of $U$ when the trace (or plasmon) formula is employed; iii) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); iv) the trace formula has the correct behavior for weak (ie, small $U$) interaction, unlike the ACFDT expression.

قيم البحث

اقرأ أيضاً

We report unphysical irregularities and discontinuities in some key experimentally-measurable quantities computed within the GW approximation of many-body perturbation theory applied to molecular systems. In particular, we show that the solution obta ined with partially self-consistent GW schemes depends on the algorithm one uses to solve self-consistently the quasi-particle (QP) equation. The main observation of the present study is that each branch of the self-energy is associated with a distinct QP solution, and that each switch between solutions implies a significant discontinuity in the quasiparticle energy as a function of the internuclear distance. Moreover, we clearly observe ripple effects, i.e., a discontinuity in one of the QP energies induces (smaller) discontinuities in the other QP energies. Going from one branch to another implies a transfer of weight between two solutions of the QP equation. The case of occupied, virtual and frontier orbitals are separately discussed on distinct diatomics. In particular, we show that multisolution behavior in frontier orbitals is more likely if the HOMO-LUMO gap is small.
180 - Carsten A. Ullrich 2018
A new class of orbital-dependent exchange-correlation (xc) potentials for applications in noncollinear spin-density-functional theory is developed. Starting from the optimized effective potential (OEP) formalism for the exact exchange potential - gen eralized to the noncollinear case - correlation effects are added via a self-consistent procedure inspired by the Singwi-Tosi-Land-Sjolander (STLS) method. The orbital-dependent xc potentials are applied to the Hubbard dimer in uniform and noncollinear magnetic fields and compared to exact diagonalization and to the Bethe-ansatz local spin-density approximation. The STLS gives the overall best performance for total energies, densities and magnetizations, particularly in the weakly to moderately correlated regime.
301 - Jing Li , Valerio Olevano 2020
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interac tion (CI) and time-dependent Hartree-Fock methods. The comparison is made on all the states we could unambiguously identify from the excitonic wave functions symmetry. At the equilibrium distance $R = 1.4 , a_0$, the GW+BSE energy levels are in good agreement with the exact results, with an accuracy of 0.1~0.2 eV. GW+BSE potential-energy curves are also in good agreement with the CI and the exact result up to $2.3 , a_0$. The solution no longer exists beyond $3.0 , a_0$ for triplets ($4.3 , a_0$ for singlets) due to instability of the ground state. We tried to improve the GW reference ground state by a renormalized random-phase approximation (r-RPA), but this did not solve the problem.
Following the recent work of Eriksen et al. [arXiv:2008.02678], we report the performance of the textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy o f the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of $-863.4$ m$E_h$ which agrees with the theoretical estimate of $-863$ m$E_h$ proposed by Eriksen et al. using an extensive array of highly-accurate new electronic structure methods.
Charged excitations of the oligoacene family of molecules, relevant for astrophysics and technological applications, are widely studied and therefore provide an excellent system for benchmarking theoretical methods. In this work, we evaluate the perf ormance of many-body perturbation theory within the GW approximation relative to new high-quality CCSD(T) reference data for charged excitations of the acenes. We compare GW calculations with a number of hybrid density functional theory starting points and with eigenvalue self-consistency. Special focus is given to elucidating the trend of GW-predicted excitations with molecule length increasing from benzene to hexacene. We find that GW calculations with starting points based on an optimally tuned range-separated hybrid (OTRSH) density functional and eigenvalue self-consistency can yield quantitative ionization potentials for the acenes. However, for larger acenes, the predicted electron affinities can deviate considerably from reference values. Our work paves the way for predictive and cost-effective GW calculations of charged excitations of molecules and identifies certain limitations of current GW methods used in practice for larger molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا