ﻻ يوجد ملخص باللغة العربية
The seamless illumination integration between a foreground object and a background scene is an important but challenging task in computer vision and augmented reality community. However, to our knowledge, there is no publicly available high-quality dataset that meets the illumination seamless integration task, which greatly hinders the development of this research direction. To this end, we apply a physically-based rendering method to create a large-scale, high-quality dataset, named IH dataset, which provides rich illumination information for seamless illumination integration task. In addition, we propose a deep learning-based SI-GAN method, a multi-task collaborative network, which makes full use of the multi-scale attention mechanism and adversarial learning strategy to directly infer mapping relationship between the inserted foreground object and corresponding background environment, and edit object illumination according to the proposed illumination exchange mechanism in parallel network. By this means, we can achieve the seamless illumination integration without explicit estimation of 3D geometric information. Comprehensive experiments on both our dataset and real-world images collected from the Internet show that our proposed SI-GAN provides a practical and effective solution for image-based object illumination editing, and validate the superiority of our method against state-of-the-art methods.
While great progress has been made recently in automatic image manipulation, it has been limited to object centric images like faces or structured scene datasets. In this work, we take a step towards general scene-level image editing by developing an
We present a user-friendly image editing system that supports a drag-and-drop object insertion (where the user merely drags objects into the image, and the system automatically places them in 3D and relights them appropriately), post-process illumina
We review the AIM 2020 challenge on virtual image relighting and illumination estimation. This paper presents the novel VIDIT dataset used in the challenge and the different proposed solutions and final evaluation results over the 3 challenge tracks.
Accurate perception of the surrounding scene is helpful for robots to make reasonable judgments and behaviours. Therefore, developing effective scene representation and recognition methods are of significant importance in robotics. Currently, a large
In this paper, we address the semantic segmentation task with a new context aggregation scheme named emph{object context}, which focuses on enhancing the role of object information. Motivated by the fact that the category of each pixel is inherited f