ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed the fast evolution and promising performance of the convolutional neural network (CNN)-based trackers, which aim at imitating biological visual systems. However, current CNN-based trackers can hardly generalize well to low-light scenes that are commonly lacked in the existing training set. In indistinguishable night scenarios frequently encountered in unmanned aerial vehicle (UAV) tracking-based applications, the robustness of the state-of-the-art (SOTA) trackers drops significantly. To facilitate aerial tracking in the dark through a general fashion, this work proposes a low-light image enhancer namely DarkLighter, which dedicates to alleviate the impact of poor illumination and noise iteratively. A lightweight map estimation network, i.e., ME-Net, is trained to efficiently estimate illumination maps and noise maps jointly. Experiments are conducted with several SOTA trackers on numerous UAV dark tracking scenes. Exhaustive evaluations demonstrate the reliability and universality of DarkLighter, with high efficiency. Moreover, DarkLighter has further been implemented on a typical UAV system. Real-world tests at night scenes have verified its practicability and dependability.
Prior correlation filter (CF)-based tracking methods for unmanned aerial vehicles (UAVs) have virtually focused on tracking in the daytime. However, when the night falls, the trackers will encounter more harsh scenes, which can easily lead to trackin
Unmanned aerial vehicle (UAV) based visual tracking has been confronted with numerous challenges, e.g., object motion and occlusion. These challenges generally introduce unexpected mutations of target appearance and result in tracking failure. Howeve
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation. With this, monitoring the operation status of UAVs is crucially important. In this work, we consider the task of tracking UAVs, providing rich information such
Images captured under low-light conditions often suffer from (partially) poor visibility. Besides unsatisfactory lightings, multiple types of degradations, such as noise and color distortion due to the limited quality of cameras, hide in the dark. In
Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accur