ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating a low-dimensional parameter in high-dimensional linear regression. Constructing an approximately unbiased estimate of the parameter of interest is a crucial step towards performing statistical inference. Several authors suggest to orthogonalize both the variable of interest and the outcome with respect to the nuisance variables, and then regress the residual outcome with respect to the residual variable. This is possible if the covariance structure of the regressors is perfectly known, or is sufficiently structured that it can be estimated accurately from data (e.g., the precision matrix is sufficiently sparse). Here we consider a regime in which the covariate model can only be estimated inaccurately, and hence existing debiasing approaches are not guaranteed to work. When errors in estimating the covariate model are correlated with errors in estimating the linear model parameter, an incomplete elimination of the bias occurs. We propose the Correlation Adjusted Debiased Lasso (CAD), which nearly eliminates this bias in some cases, including cases in which the estimation errors are neither negligible nor orthogonal. We consider a setting in which some unlabeled samples might be available to the statistician alongside labeled ones (semi-supervised learning), and our guarantees hold under the assumption of jointly Gaussian covariates. The new debiased estimator is guaranteed to cancel the bias in two cases: (1) when the total number of samples (labeled and unlabeled) is larger than the number of parameters, or (2) when the covariance of the nuisance (but not the effect of the nuisance on the variable of interest) is known. Neither of these cases is treated by state-of-the-art methods.
The analysis of high dimensional survival data is challenging, primarily due to the problem of overfitting which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here we propose a novel method of
Completely randomized experiments have been the gold standard for drawing causal inference because they can balance all potential confounding on average. However, they can often suffer from unbalanced covariates for realized treatment assignments. Re
We propose a new class of semiparametric regression models of mean residual life for censored outcome data. The models, which enable us to estimate the expected remaining survival time and generalize commonly used mean residual life models, also cond
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also im
Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression problems with grouped covariates. SGL applies $l_1$ and $l_2$ penalties on the individual predictors and group predictors, respectively, to guarantee sparse effect