ترغب بنشر مسار تعليمي؟ اضغط هنا

CAD: Debiasing the Lasso with inaccurate covariate model

82   0   0.0 ( 0 )
 نشر من قبل Michael Celentano
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of estimating a low-dimensional parameter in high-dimensional linear regression. Constructing an approximately unbiased estimate of the parameter of interest is a crucial step towards performing statistical inference. Several authors suggest to orthogonalize both the variable of interest and the outcome with respect to the nuisance variables, and then regress the residual outcome with respect to the residual variable. This is possible if the covariance structure of the regressors is perfectly known, or is sufficiently structured that it can be estimated accurately from data (e.g., the precision matrix is sufficiently sparse). Here we consider a regime in which the covariate model can only be estimated inaccurately, and hence existing debiasing approaches are not guaranteed to work. When errors in estimating the covariate model are correlated with errors in estimating the linear model parameter, an incomplete elimination of the bias occurs. We propose the Correlation Adjusted Debiased Lasso (CAD), which nearly eliminates this bias in some cases, including cases in which the estimation errors are neither negligible nor orthogonal. We consider a setting in which some unlabeled samples might be available to the statistician alongside labeled ones (semi-supervised learning), and our guarantees hold under the assumption of jointly Gaussian covariates. The new debiased estimator is guaranteed to cancel the bias in two cases: (1) when the total number of samples (labeled and unlabeled) is larger than the number of parameters, or (2) when the covariance of the nuisance (but not the effect of the nuisance on the variable of interest) is known. Neither of these cases is treated by state-of-the-art methods.

قيم البحث

اقرأ أيضاً

The analysis of high dimensional survival data is challenging, primarily due to the problem of overfitting which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here we propose a novel method of extracting a low dimensional representation of covariates in survival data by combining the popular Gaussian Process Latent Variable Model (GPLVM) with a Weibull Proportional Hazards Model (WPHM). The combined model offers a flexible non-linear probabilistic method of detecting and extracting any intrinsic low dimensional structure from high dimensional data. By reducing the covariate dimension we aim to diminish the risk of overfitting and increase the robustness and accuracy with which we infer relationships between covariates and survival outcomes. In addition, we can simultaneously combine information from multiple data sources by expressing multiple datasets in terms of the same low dimensional space. We present results from several simulation studies that illustrate a reduction in overfitting and an increase in predictive performance, as well as successful detection of intrinsic dimensionality. We provide evidence that it is advantageous to combine dimensionality reduction with survival outcomes rather than performing unsupervised dimensionality reduction on its own. Finally, we use our model to analyse experimental gene expression data and detect and extract a low dimensional representation that allows us to distinguish high and low risk groups with superior accuracy compared to doing regression on the original high dimensional data.
106 - Yuhao Wang , Xinran Li 2021
Completely randomized experiments have been the gold standard for drawing causal inference because they can balance all potential confounding on average. However, they can often suffer from unbalanced covariates for realized treatment assignments. Re randomization, a design that rerandomizes the treatment assignment until a prespecified covariate balance criterion is met, has recently got attention due to its easy implementation, improved covariate balance and more efficient inference. Researchers have then suggested to use the assignments that minimize the covariate imbalance, namely the optimally balanced design. This has caused again the long-time controversy between two philosophies for designing experiments: randomization versus optimal and thus almost deterministic designs. Existing literature argued that rerandomization with overly balanced observed covariates can lead to highly imbalanced unobserved covariates, making it vulnerable to model misspecification. On the contrary, rerandomization with properly balanced covariates can provide robust inference for treatment effects while sacrificing some efficiency compared to the ideally optimal design. In this paper, we show it is possible that, by making the covariate imbalance diminishing at a proper rate as the sample size increases, rerandomization can achieve its ideally optimal precision that one can expect with perfectly balanced covariates while still maintaining its robustness. In particular, we provide the sufficient and necessary condition on the number of covariates for achieving the desired optimality. Our results rely on a more dedicated asymptotic analysis for rerandomization. The derived theory for rerandomization provides a deeper understanding of its large-sample property and can better guide its practical implementation. Furthermore, it also helps reconcile the controversy between randomized and optimal designs.
104 - Ge Zhao , Yanyuan Ma , Huazhen Lin 2020
We propose a new class of semiparametric regression models of mean residual life for censored outcome data. The models, which enable us to estimate the expected remaining survival time and generalize commonly used mean residual life models, also cond uct covariate dimension reduction. Using the geometric approaches in semiparametrics literature and the martingale properties with survival data, we propose a flexible inference procedure that relaxes the parametric assumptions on the dependence of mean residual life on covariates and how long a patient has lived. We show that the estimators for the covariate effects are root-$n$ consistent, asymptotically normal, and semiparametrically efficient. With the unspecified mean residual life function, we provide a nonparametric estimator for predicting the residual life of a given subject, and establish the root-$n$ consistency and asymptotic normality for this estimator. Numerical experiments are conducted to illustrate the feasibility of the proposed estimators. We apply the method to analyze a national kidney transplantation dataset to further demonstrate the utility of the work.
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also im portant to properly estimate the existing parameters corresponding to important covariates. In this spirit, Fan and Li (2001) proposed Oracle property as a desired feature of a variable selection method. Oracle property has two parts; one is the variable selection consistency (VSC) and the other one is the asymptotic normality. Keeping VSC fixed and making the other part stronger, Fan and Lv (2008) introduced the strong oracle property. In this paper, we consider different penalized regression techniques which are VSC and classify those based on oracle and strong oracle property. We show that both the residual and the perturbation bootstrap methods are second order correct for any penalized estimator irrespective of its class. Most interesting of all is the Lasso, introduced by Tibshirani (1996). Although Lasso is VSC, it is not asymptotically normal and hence fails to satisfy the oracle property.
217 - Kan Chen , Zhiqi Bu , Shiyun Xu 2021
Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression problems with grouped covariates. SGL applies $l_1$ and $l_2$ penalties on the individual predictors and group predictors, respectively, to guarantee sparse effect s both on the inter-group and within-group levels. In this paper, we apply the approximate message passing (AMP) algorithm to efficiently solve the SGL problem under Gaussian random designs. We further use the recently developed state evolution analysis of AMP to derive an asymptotically exact characterization of SGL solution. This allows us to conduct multiple fine-grained statistical analyses of SGL, through which we investigate the effects of the group information and $gamma$ (proportion of $ell_1$ penalty). With the lens of various performance measures, we show that SGL with small $gamma$ benefits significantly from the group information and can outperform other SGL (including LASSO) or regularized models which does not exploit the group information, in terms of the recovery rate of signal, false discovery rate and mean squared error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا