ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling quasiparticle dynamics of topological insulators through Bayesian modelling

76   0   0.0 ( 0 )
 نشر من قبل Satoru Tokuda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasiparticle - a key concept to describe interacting particles - characterizes electron-electron interaction in metals (Fermi liquid) and electron pairing in superconductors. While this concept essentially relies on the simplification of hard-to-solve many-body problem into one-particle picture and residual effects, a difficulty in disentangling many-body effects from experimental quasiparticle signature sometimes hinders unveiling intrinsic low-energy dynamics, as highlighted by the fierce controversy on the origin of Dirac-band anomaly in graphene and dispersion kink in high-temperature superconductors. Here, we propose an approach to solve this fundamental problem - the Bayesian modelling of quasiparticles. We have chosen a topological insulator $mathrm{TlBi(S,Se)_2}$ as a model system to formulate an inverse problem of quasiparticle spectra with semiparametric Bayesian analysis, and successfully extracted one-particle and many-body characteristics, i.e. the intrinsic energy gap and unusual lifetime in Dirac-quasiparticle bands. Our approach is widely applicable to clarify the quasiparticle dynamics of quantum materials.



قيم البحث

اقرأ أيضاً

Quantized Hall conductance is a generic feature of two dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed t o be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. Here, we use scanning nanoSQUID magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)$_2$Te$_3$ thin film. Contrary to naive expectations based upon macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can in turn drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.
In the giant Rashba semiconductor BiTeI electronic surface scattering with Lorentzian linewidth is observed that shows a strong dependence on surface termination and surface potential shifts. A comparison with the topological insulator Bi2Se3 evidenc es that surface confined quantum well states are the origin of these processes. We notice an enhanced quasiparticle dynamics of these states with scattering rates that are comparable to polaronic systems in the collision dominated regime. The Eg symmetry of the Lorentzian scattering contribution is different from the chiral (RL) symmetry of the corresponding signal in the topological insulator although both systems have spin-split surface states.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to pological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
178 - Pinyuan Wang , Jun Ge , Jiaheng Li 2020
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be gene rated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being useful means of exploring the interaction between topology and magnetism. However, the inhomogeneity of magnetic doping leads to complicated magnetic ordering and small exchange gaps, and consequently the observed QAHE appears only at ultralow temperatures. Therefore, intrinsic magnetic topological insulators are highly desired for increasing the QAHE working temperature and for investigating topological quantum phenomena further. The realization and characterization of such systems are essential for both fundamental physics and potential technical revolutions. This review summarizes recent research progress in intrinsic magnetic topological insulators, focusing mainly on the antiferromagnetic topological insulator MnBi2Te4 and its family of materials.
Two-dimensional magnetic insulators can be promising hosts for topological magnons. In this study, we show that ABC-stacked honeycomb lattice multilayers with alternating Dzyaloshinskii-Moriya interaction (DMI) reveal a rich topological magnon phase diagram. Based on our bandstructure and Berry curvature calculations, we demonstrate jumps in the thermal Hall behavior that corroborate with topological phase transitions triggered by adjusting the DMI and interlayer coupling. We connect the phase diagram of generic multilayers to a bilayer and a trilayer system. We find an even-odd effect amongst the multilayers where the even layers show no jump in thermal Hall conductivity, but the odd layers do. We also observe the presence of topological proximity effect in our trilayer. Our results offer new schemes to manipulate Chern numbers and their measurable effects in topological magnonic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا