In this paper, we propose an efficient human pose estimation network -- SFM (slender fusion model) by fusing multi-level features and adding lightweight attention blocks -- HSA (High-Level Spatial Attention). Many existing methods on efficient network have already taken feature fusion into consideration, which largely boosts the performance. However, its performance is far inferior to large network such as ResNet and HRNet due to its limited fusion operation in the network. Specifically, we expand the number of fusion operation by building bridges between two pyramid frameworks without adding layers. Meanwhile, to capture long-range dependency, we propose a lightweight attention block -- HSA, which computes second-order attention map. In summary, SFM maximizes the number of feature fusion in a limited number of layers. HSA learns high precise spatial information by computing the attention of spatial attention map. With the help of SFM and HSA, our network is able to generate multi-level feature and extract precise global spatial information with little computing resource. Thus, our method achieve comparable or even better accuracy with less parameters and computational cost. Our SFM achieve 89.0 in [email protected], 42.0 in [email protected] on MPII validation set and 71.7 in AP, 90.7 in [email protected] on COCO validation with only 1.7G FLOPs and 1.5M parameters. The source code will be public soon.
3D human shape and pose estimation is the essential task for human motion analysis, which is widely used in many 3D applications. However, existing methods cannot simultaneously capture the relations at multiple levels, including spatial-temporal lev
el and human joint level. Therefore they fail to make accurate predictions in some hard scenarios when there is cluttered background, occlusion, or extreme pose. To this end, we propose Multi-level Attention Encoder-Decoder Network (MAED), including a Spatial-Temporal Encoder (STE) and a Kinematic Topology Decoder (KTD) to model multi-level attentions in a unified framework. STE consists of a series of cascaded blocks based on Multi-Head Self-Attention, and each block uses two parallel branches to learn spatial and temporal attention respectively. Meanwhile, KTD aims at modeling the joint level attention. It regards pose estimation as a top-down hierarchical process similar to SMPL kinematic tree. With the training set of 3DPW, MAED outperforms previous state-of-the-art methods by 6.2, 7.2, and 2.4 mm of PA-MPJPE on the three widely used benchmarks 3DPW, MPI-INF-3DHP, and Human3.6M respectively. Our code is available at https://github.com/ziniuwan/maed.
In this paper, we propose an efficient human pose estimation network (DANet) by learning deeply aggregated representations. Most existing models explore multi-scale information mainly from features with different spatial sizes. Powerful multi-scale r
epresentations usually rely on the cascaded pyramid framework. This framework largely boosts the performance but in the meanwhile makes networks very deep and complex. Instead, we focus on exploiting multi-scale information from layers with different receptive-field sizes and then making full of use this information by improving the fusion method. Specifically, we propose an orthogonal attention block (OAB) and a second-order fusion unit (SFU). The OAB learns multi-scale information from different layers and enhances them by encouraging them to be diverse. The SFU adaptively selects and fuses diverse multi-scale information and suppress the redundant ones. This could maximize the effective information in final fused representations. With the help of OAB and SFU, our single pyramid network may be able to generate deeply aggregated representations that contain even richer multi-scale information and have a larger representing capacity than that of cascaded networks. Thus, our networks could achieve comparable or even better accuracy with much smaller model complexity. Specifically, our mbox{DANet-72} achieves $70.5$ in AP score on COCO test-dev set with only $1.0G$ FLOPs. Its speed on a CPU platform achieves $58$ Persons-Per-Second~(PPS).
We explore the importance of spatial contextual information in human pose estimation. Most state-of-the-art pose networks are trained in a multi-stage manner and produce several auxiliary predictions for deep supervision. With this principle, we pres
ent two conceptually simple and yet computational efficient modules, namely Cascade Prediction Fusion (CPF) and Pose Graph Neural Network (PGNN), to exploit underlying contextual information. Cascade prediction fusion accumulates prediction maps from previous stages to extract informative signals. The resulting maps also function as a prior to guide prediction at following stages. To promote spatial correlation among joints, our PGNN learns a structured representation of human pose as a graph. Direct message passing between different joints is enabled and spatial relation is captured. These two modules require very limited computational complexity. Experimental results demonstrate that our method consistently outperforms previous methods on MPII and LSP benchmark.
Like many computer vision problems, human pose estimation is a challenging problem in that recognizing a body part requires not only information from local area but also from areas with large spatial distance. In order to spatially pass information,
large convolutional kernels and deep layers have been normally used, introducing high computation cost and large parameter space. Luckily for pose estimation, human body is geometrically structured in images, enabling modeling of spatial dependency. In this paper, we propose a spatial shortcut network for pose estimation task, where information is easier to flow spatially. We evaluate our model with detailed analyses and present its outstanding performance with smaller structure.
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D
poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at url{https://github.com/microsoft/multiview-human-pose-estimation-pytorch}.