ﻻ يوجد ملخص باللغة العربية
Triple-star systems exhibit a phenomenon known as the Triple Evolution Dynamical Instability (TEDI), in which mass loss in evolving triples triggers short-term dynamical instabilities, potentially leading to collisions of stars, exchanges, and ejections. Previous work has shown that the TEDI is an important pathway to head-on stellar collisions in the Galaxy, significantly exceeding the rate of collisions due to random encounters in globular clusters. Here, we revisit the TEDI evolutionary pathway using state-of-the-art population synthesis methods that self-consistently take into account stellar evolution and binary interactions, as well as gravitational dynamics and perturbations from passing stars in the field. We find Galactic TEDI-induced collision rates on the order of 1e-4/yr, consistent with previous studies which were based on more simplified methods. The majority of TEDI-induced collisions involve main sequence stars, potentially producing blue straggler stars. Collisions are also possible involving more evolved stars, potentially producing eccentric post-common-envelope systems, and white dwarfs collisions leading to Type Ia supernovae (although the latter with a negligible contribution to the Galactic rate). In our simulations, the TEDI is not only triggered by adiabatic wind mass loss, but also by Roche lobe overflow in the inner binary: when the donor star becomes less massive than the accretor, the inner binary orbit widens, triggering triple dynamical instability. We find that collision rates are increased by ~17% when fly-bys in the field are taken into account. In addition to collisions, we find that the TEDI produces ~1e-4/yr of unbound stars, although none with escape speeds in excess of 1e3 km/s.
Field stars are frequently formed in pairs, and many of these binaries are part of triples or even higher-order systems. Even though, the principles of single stellar evolution and binary evolution, have been accepted for a long time, the long-term e
Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are
In 1977, Flowers and Ruderman described a perturbation that destabilises a purely dipolar magnetic field in a fluid star. They considered the effect of cutting the star in half along a plane containing the symmetry axis and rotating each half by $90d
We present a new model describing the evolution of triple stars which undergo common envelope evolution, using a combination of analytic and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which
We investigate the quantitative constraint on the triple-alpha reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed i