ﻻ يوجد ملخص باللغة العربية
Among various perovskite proton conducting oxides, Y-doped BaZrO3 perovskite is a promising material for electrochemical hydrogen devices due to the good chemical stability and higher proton conductivity at higher operating temperatures like 500-800 {deg}C. For the practical application of the functional BaZrO3 proton conductor in the electrochemical hydrogen devices, its necessary to understand the isotopic effect of proton conductivity. To understand the isotopic effect of proton conductivity in the barium zirconates, in this study, the proton conductivity in the Ar, (Ar + 4% H2), (Ar + 4% D2), (Ar + H2O), (Ar + D2O), and O2 atmospheres were measured for two different compositions: BaZr0.9Y0.1O2.95 (BZY), and BaZr0.955Y0.03Co0.015O2.97 (BZYC) in the temperature range from 500 {deg}C to 1000 {deg}C. By comparing the obtained results, a significant difference in sinterability, conductivity, and the isotopic effect was observed due to the co-doping of the Co element in the BaZr1-xYxO3-a proton conductor.
Quantum nuclear zero-point motions in solid H$_2$ and D$_2$ under pressure are investigated at 80 K up to 160 GPa by first-principles path-integral molecular dynamics calculations. Molecular orientations are well-defined in phase II of D$_2$, while s
The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as
Liquid metallic hydrogen (LMH) was recently produced under static compression and high temperatures in bench-top experiments. Here, we report a study of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar and use the Drude free-elec
The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ c
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are b