ﻻ يوجد ملخص باللغة العربية
One of the difficulties in doing noncommutative projective geometry via explicitly presented graded algebras is that it is usually quite difficult to show flatness, as the Hilbert series is uncomputable in general. If the algebra has a regular central element, one can reduce to understanding the (hopefully more tractable) quotient. If the quotient is particularly nice, one can proceed in reverse and find all algebras of which it is the quotient by a regular central element (the filtered deformations of the quotient). We consider in detail the case that the quotient is an elliptic algebra (the homogeneous endomorphism ring of a vector bundle on an elliptic curve, possibly twisted by translation). We explicitly compute the family of filtered deformations in many cases and give a (conjecturally exhaustive) construction of such deformations from noncommutative del Pezzo surfaces. In the process, we also give a number of results on the classification of exceptional collections on del Pezzo surfaces, which are new even in the commutative case.
We introduce a natural nondegeneracy condition for Poisson structures, called holonomicity, which is closely related to the notion of a log symplectic form. Holonomic Poisson manifolds are privileged by the fact that their deformation spaces are as f
The elliptic algebras in the title are connected graded $mathbb{C}$-algebras, denoted $Q_{n,k}(E,tau)$, depending on a pair of relatively prime integers $n>kge 1$, an elliptic curve $E$, and a point $tauin E$. This paper examines a canonical homomorp
In this work we study the deformations of a Hopf algebra $H$ by partial actions of $H$ on its base field $Bbbk$, via partial smash product algebras. We introduce the concept of a $lambda$-Hopf algebra as a Hopf algebra obtained as a partial smash p
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en
Let $E$ be an elliptic curve. When the symmetric group $Sigma_{g+1}$ of order $(g+1)!$ acts on $E^{g+1}$ in the natural way, the subgroup $E_0^{g+1}$, consisting of those $(g+1)$-tuples whose coordinates sum to zero, is stable under the action of $Si