ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive Estimation of a Failure Probability for a Lipschitz Function

155   0   0.0 ( 0 )
 نشر من قبل Arnaud Guyader
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Lucie Bernard




اسأل ChatGPT حول البحث

Let g : $Omega$ = [0, 1] d $rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $Omega$ such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of $Omega$. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X) > T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.



قيم البحث

اقرأ أيضاً

In this work, we study a new recursive stochastic algorithm for the joint estimation of quantile and superquantile of an unknown distribution. The novelty of this algorithm is to use the Cesaro averaging of the quantile estimation inside the recursiv e approximation of the superquantile. We provide some sharp non-asymptotic bounds on the quadratic risk of the superquantile estimator for different step size sequences. We also prove new non-asymptotic $L^p$-controls on the Robbins Monro algorithm for quantile estimation and its averaged version. Finally, we derive a central limit theorem of our joint procedure using the diffusion approximation point of view hidden behind our stochastic algorithm.
193 - Karine Bertin 2020
We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.
268 - Anthony Reveillac 2008
In this paper we give a central limit theorem for the weighted quadratic variations process of a two-parameter Brownian motion. As an application, we show that the discretized quadratic variations $sum_{i=1}^{[n s]} sum_{j=1}^{[n t]} | Delta_{i,j} Y |^2$ of a two-parameter diffusion $Y=(Y_{(s,t)})_{(s,t)in[0,1]^2}$ observed on a regular grid $G_n$ is an asymptotically normal estimator of the quadratic variation of $Y$ as $n$ goes to infinity.
The aim of this paper is to study the asymptotic properties of the maximum likelihood estimator (MLE) of the drift coefficient for fractional stochastic heat equation driven by an additive space-time noise. We consider the traditional for stochastic partial differential equations statistical experiment when the measurements are performed in the spectral domain, and in contrast to the existing literature, we study the asymptotic properties of the maximum likelihood (type) estimators (MLE) when both, the number of Fourier modes and the time go to infinity. In the first part of the paper we consider the usual setup of continuous time observations of the Fourier coefficients of the solutions, and show that the MLE is consistent, asymptotically normal and optimal in the mean-square sense. In the second part of the paper we investigate the natural time discretization of the MLE, by assuming that the first N Fourier modes are measured at M time grid points, uniformly spaced over the time interval [0,T]. We provide a rigorous asymptotic analysis of the proposed estimators when N goes to infinity and/or T, M go to infinity. We establish sufficient conditions on the growth rates of N, M and T, that guarantee consistency and asymptotic normality of these estimators.
The approximation of integral functionals with respect to a stationary Markov process by a Riemann-sum estimator is studied. Stationarity and the functional calculus of the infinitesimal generator of the process are used to get a better understanding of the estimation error and to prove a general error bound. The presented approach admits general integrands and gives a unifying explanation for different rates obtained in the literature. Several examples demonstrate how the general bound can be related to well-known function spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا