ترغب بنشر مسار تعليمي؟ اضغط هنا

Third-order scale-independent WENO-Z scheme achieving optimal order at critical points

81   0   0.0 ( 0 )
 نشر من قبل Qin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As we found previously, when critical points occur within grid intervals, the accuracy relations of smoothness indicators of WENO-JS would differ from that assuming critical points occurring on grid nodes, and accordingly the global smoothness indicator in WENO-Z scheme will differ from the original one. Based on above understandings, we first discuss several issues regarding current third-order WENO-Z improvements (e.g. WENO-NP3, -F3, -NN3, -PZ3 and -P+3), i.e. the numerical results with scale dependency, the validity of analysis assuming critical points occurring on nodes, and the sensitivity regarding computational time step and initial condition in order convergence studies. By analyses and numerical validations, the defections of present improvements are demonstrated, either scale-dependency of results or failure to recover optimal order when critical points occurring at half nodes, then a generic analysis is provided which considers the first-order critical point occurring within grid intervals. Based on achieved theoretical outcomes, two scale-independent, third-order WENO-Z schemes are proposed which could truly recover the optimal order at critical points: the first one is acquired by limited expansion of grid stencil, deriving new global smoothness indicator and incorporating with the mapping function; the second one is achieved by further expanding grid stencil and employing a different global smoothness indicator. For validating, typical 1-D scalar advection problems, 1-D and 2-D problems by Euler equations are chosen and tested. The consequences verify the optimal order recovery at critical points by proposed schemes and show that: the first scheme outperforms aforementioned third-order WENO-Z improvements in terms of numerical resolution, while the second scheme indicates weak numerical robustness in spite of improved resolution and is mainly of theoretical significance



قيم البحث

اقرأ أيضاً

In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial recons truction, with total variation diminishing Runge-Kutta time discretization. The main idea of the hybrid HWENO scheme is that we first use a shock-detection technique to identify the troubled cell, then, if the cell is identified as a troubled cell, we would modify the first order moment in the troubled cell and employ HWENO reconstruction in spatial discretization; otherwise, we directly use high order linear reconstruction. Unlike other HWENO schemes, we borrow the thought of limiter for discontinuous Galerkin (DG) method to control the spurious oscillations, after this procedure, the scheme would avoid the oscillations by using HWENO reconstruction nearby discontinuities and have higher efficiency for using linear approximation straightforwardly in the smooth regions. In addition, the hybrid HWENO scheme still keeps the compactness. A collection of benchmark numerical tests for one and two dimensional cases are performed to demonstrate the numerical accuracy, high resolution and robustness of the proposed scheme.
In this paper, we propose a novel Hermite weighted essentially non-oscillatory (HWENO) fast sweeping method to solve the static Hamilton-Jacobi equations efficiently. During the HWENO reconstruction procedure, the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils. However, one major novelty and difference from the traditional HWENO framework lies in the fact that, we do not need to introduce and solve any additional equations to update the derivatives of the unknown function $phi$. Instead, we use the current $phi$ and the old spatial derivative of $phi$ to update them. The traditional HWENO fast sweeping method is also introduced in this paper for comparison, where additional equations governing the spatial derivatives of $phi$ are introduced. The novel HWENO fast sweeping methods are shown to yield great savings in both computational time and storage, which improves the computational efficiency of the traditional HWENO scheme. In addition, a hybrid strategy is also introduced to further reduce computational costs. Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson--Nernst--Planck (PNP) equations, which has found much use in diverse applications. Our DG meth od with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions.
In this paper, we combine the nonlinear HWENO reconstruction in cite{newhwenozq} and the fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the static Hamilton-Jacobi equations in a novel HWENO framework recently developed in ci te{mehweno1}. The proposed HWENO frameworks enjoys several advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function $phi$. They are now computed from the current value of $phi$ and the previous spatial derivatives of $phi$. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO scheme. In addition, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller on the same mesh. Second, the fixed-point fast sweeping method is used to update the numerical approximation. It is an explicit method and does not involve the inverse operation of nonlinear Hamiltonian, therefore any Hamilton-Jacobi equations with complex Hamiltonian can be solved easily. It also resolves some known issues, including that the iterative number is very sensitive to the parameter $varepsilon$ used in the nonlinear weights, as observed in previous studies. Finally, in order to further reduce the computational cost, a hybrid strategy is also presented. Extensive numerical experiments are performed on two-dimensional problems, which demonstrate the good performance of the proposed fixed-point fast sweeping HWENO methods.
162 - Zhuang Zhao , Jianxian Qiu 2020
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used in the spatial reconstruction. We construct the HWENO methodology using a nonlinear convex combination of a high degree polynomial with several low degree polynomials, and the associated linear weights can be any artificial positive numbers with only requirement that their summation equals one. The one advantage of the HWENO scheme is its simplicity and easy extension to multi-dimension in engineering applications for we can use any artificial linear weights which are independent on geometry of mesh. The another advantage is its higher order numerical accuracy using less candidate stencils for two dimensional problems. In addition, the HWENO scheme still keeps the compactness as only immediate neighbor information is needed in the reconstruction and has high efficiency for directly using linear approximation in the smooth regions. In order to avoid nonphysical oscillations nearby strong shocks or contact discontinuities, we adopt the thought of limiter for discontinuous Galerkin method to control the spurious oscillations. Some benchmark numerical tests are performed to demonstrate the capability of the proposed scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا