ﻻ يوجد ملخص باللغة العربية
The quality of experience (QoE) requirements of wireless Virtual Reality (VR) can only be satisfied with high data rate, high reliability, and low VR interaction latency. This high data rate over short transmission distances may be achieved via abundant bandwidth in the terahertz (THz) band. However, THz waves suffer from severe signal attenuation, which may be compensated by the reconfigurable intelligent surface (RIS) technology with programmable reflecting elements. Meanwhile, the low VR interaction latency may be achieved with the mobile edge computing (MEC) network architecture due to its high computation capability. Motivated by these considerations, in this paper, we propose a MEC-enabled and RIS-assisted THz VR network in an indoor scenario, by taking into account the uplink viewpoint prediction and position transmission, MEC rendering, and downlink transmission. We propose two methods, which are referred to as centralized online Gated Recurrent Unit (GRU) and distributed Federated Averaging (FedAvg), to predict the viewpoints of VR users. In the uplink, an algorithm that integrates online Long-short Term Memory (LSTM) and Convolutional Neural Networks (CNN) is deployed to predict the locations and the line-of-sight and non-line-of-sight statuses of the VR users over time. In the downlink, we further develop a constrained deep reinforcement learning algorithm to select the optimal phase shifts of the RIS under latency constraints. Simulation results show that our proposed learning architecture achieves near-optimal QoE as that of the genie-aided benchmark algorithm, and about two times improvement in QoE compared to the random phase shift selection scheme.
Wireless-connected Virtual Reality (VR) provides immersive experience for VR users from any-where at anytime. However, providing wireless VR users with seamless connectivity and real-time VR video with high quality is challenging due to its requireme
Wireless Virtual Reality (VR) users are able to enjoy immersive experience from anywhere at anytime. However, providing full spherical VR video with high quality under limited VR interaction latency is challenging. If the viewpoint of the VR user can
Terahertz spectrum is being researched upon to provide ultra-high throughput radio links for indoor applications, e.g., virtual reality (VR), etc. as well as outdoor applications, e.g., backhaul links, etc. This paper investigates a monopulse-based b
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system. Various benefits brought by deploying one or multiple RISs include increased spectrum and energy
In this work, we propose a beam training codebook for Reconfigurable Intelligent Surface (RIS) assisted mmWave uplink communication. Beam training procedure is important to establish a reliable link between user node and Access point (AP). A codebook