ترغب بنشر مسار تعليمي؟ اضغط هنا

Every Flare, Everywhere: An All-Sky Untriggered Search for Astrophysical Neutrino Transients Using IceCube Data

55   0   0.0 ( 0 )
 نشر من قبل Francesco Lucarelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent results from IceCube regarding TXS 0506+056 suggest the presence of neutrino flares that are not temporally coincident with a significant corresponding gamma ray flare. Such flares are particularly difficult to identify, as their presence must be inferred from the temporal distribution of neutrino data alone. Here we present the results of using a novel method to search for all such flares across the entire neutrino sky in 10 years of IceCube data, using both Gaussian and box-shaped flare hypotheses. Unlike for past searches, that looked for only the most significant neutrino flare in the data at a given direction, here we implement an algorithm to combine information from multiple flares associated with a single source candidate. This represents the most detailed description of the neutrino sky to date, providing the location and intensity of all neutrino cluster candidates in both space and time. These results can be used to further constrain potential populations of transient neutrino sources, serving as a complement to existing time-integrated and time-dependent methods.

قيم البحث

اقرأ أيضاً

DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resol ution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below $E_ u^2dphi/dE_ u=10^{-12}:mathrm{TeV,cm^{-2},s^{-1}}$, on average $38%$ lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
Recently the IceCube collaboration and 15 other collaborations reported the spatial and temporal coincidence between the neutrino event IceCube-170922A and the radio-TeV activity of the blazar TXS 0506+056. Their further analysis on 9.5 years of IceC ube data discovered neutrino flare between September 2014 and March 2015, when TXS 0506+056 is however in quiescent state. We analyze the Fermi-LAT data in that direction, and find another bright GeV source PKS 0502+049, which is at an angle of $1.2^{circ}$ from TXS 0506+056, with strong activties during the neutrino flare. No other bright GeV source was detected in the region of interest. Though PKS 0502+049 is $1.2^circ$ separated from TXS 0506+056, it locates within the directional reconstruction uncertainties of 7 neutrinos, out of the 13 neutrino events during the neutrino flare. Together with the observed high flux of the $gamma$-ray flare, it may be unreasonable to fully discard the (partial) contribution of PKS 0502+049 to the neutrino flare. The single source assumption used in the neutrino data analysis might need to be revisited.
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th ose used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{circ}$ < {delta} < 90$^{circ}$ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$,$s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-y ear search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCubes four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا