ترغب بنشر مسار تعليمي؟ اضغط هنا

One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval

200   0   0.0 ( 0 )
 نشر من قبل Akari Asai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present CORA, a Cross-lingual Open-Retrieval Answer Generation model that can answer questions across many languages even when language-specific annotated data or knowledge sources are unavailable. We introduce a new dense passage retrieval algorithm that is trained to retrieve documents across languages for a question. Combined with a multilingual autoregressive generation model, CORA answers directly in the target language without any translation or in-language retrieval modules as used in prior work. We propose an iterative training method that automatically extends annotated data available only in high-resource languages to low-resource ones. Our results show that CORA substantially outperforms the previous state of the art on multilingual open question answering benchmarks across 26 languages, 9 of which are unseen during training. Our analyses show the significance of cross-lingual retrieval and generation in many languages, particularly under low-resource settings.



قيم البحث

اقرأ أيضاً

Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
117 - Peng Shi , Rui Zhang , He Bai 2021
Dense retrieval has shown great success in passage ranking in English. However, its effectiveness in document retrieval for non-English languages remains unexplored due to the limitation in training resources. In this work, we explore different trans fer techniques for document ranking from English annotations to multiple non-English languages. Our experiments on the test collections in six languages (Chinese, Arabic, French, Hindi, Bengali, Spanish) from diverse language families reveal that zero-shot model-based transfer using mBERT improves the search quality in non-English mono-lingual retrieval. Also, we find that weakly-supervised target language transfer yields competitive performances against the generation-based target language transfer that requires external translators and query generators.
We analyse the performance of passage retrieval models in the presence of complex (multi-hop) questions to provide a better understanding of how retrieval systems behave when multiple hops of reasoning are needed. In simple open-domain question answe ring (QA), dense passage retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense passage retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple documents and reasoning over them is required. However, so far, the dense retrieval models are not evaluated properly concerning the multi-hop nature of the problem: models are typically evaluated by the end result of the retrieval pipeline, which leaves unclear where their success lies. In this work, we provide an in-depth evaluation of such models not only unveiling the reasons behind their success but also their limitations. Moreover, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval model, while requiring substantially less computational resources. Furthermore, we also perform qualitative analysis to better understand the challenges behind passage retrieval for multi-hop QA.
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.
Recent advances in multimodal vision and language modeling have predominantly focused on the English language, mostly due to the lack of multilingual multimodal datasets to steer modeling efforts. In this work, we address this gap and provide xGQA, a new multilingual evaluation benchmark for the visual question answering task. We extend the established English GQA dataset to 7 typologically diverse languages, enabling us to detect and explore crucial challenges in cross-lingual visual question answering. We further propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual, and -- vice versa -- multilingual models to become multimodal. Our proposed methods outperform current state-of-the-art multilingual multimodal models (e.g., M3P) in zero-shot cross-lingual settings, but the accuracy remains low across the board; a performance drop of around 38 accuracy points in target languages showcases the difficulty of zero-shot cross-lingual transfer for this task. Our results suggest that simple cross-lingual transfer of multimodal models yields latent multilingual multimodal misalignment, calling for more sophisticated methods for vision and multilingual language modeling. The xGQA dataset is available online at: https://github.com/Adapter-Hub/xGQA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا