ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniqueness and stability of steady-state solution with finite energy to the fractal Burgers equation

115   0   0.0 ( 0 )
 نشر من قبل Yong Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper is concerned with the steady-state Burgers equation of fractional dissipation on the real line. We first prove the global existence of viscosity weak solutions to the fractal Burgers equation driven by the external force. Then the existence and uniqueness of solution with finite $H^{frac{alpha}{2}}$ energy to the steady-state equation are established by estimating the decay of fractal Burgers solutions. Furthermore, we show that the unique steady-state solution is nonlinearly stable, which means any viscosity weak solution of fractal Burgers equation, starting close to the steady-state solution, will return to the steady state as $trightarrowinfty$.


قيم البحث

اقرأ أيضاً

203 - Yong Zhang 2021
The paper is concerned with the time-periodic (T-periodic) problem of the fractal Burgers equation with a T-periodic force on the real line. Based on the Galerkin approximates and Fourier series (transform) methods, we first prove the existence of T- periodic solution to a linearized version. Then, the existence and uniqueness of T-periodic solution to the nonlinear equation are established by the contraction mapping argument. Furthermore, we show that the unique T-periodic solution is asymptotically stable. This analysis, which is carried out in energy space $ H^{1}(0,T;H^{frac{alpha}{2}}(R))cap L^{2}(0,T;dot{H}^{alpha})$ with $1<alpha<frac{3}{2}$, extends the T-periodic viscid Burgers equation in cite{5} to the T-periodic fractional case.
In this paper we prove the uniqueness of the saddle-shaped solution to the semilinear nonlocal elliptic equation $(-Delta)^gamma u = f(u)$ in $mathbb R^{2m}$, where $gamma in (0,1)$ and $f$ is of Allen-Cahn type. Moreover, we prove that this solution is stable whenever $2mgeq 14$. As a consequence of this result and the connection of the problem with nonlocal minimal surfaces, we show that the Simons cone ${(x, x) in mathbb R^{m}times mathbb R^m : |x| = |x|}$ is a stable nonlocal $(2gamma)$-minimal surface in dimensions $2mgeq 14$. Saddle-shaped solutions of the fractional Allen-Cahn equation are doubly radial, odd with respect to the Simons cone, and vanish only in this set. It was known that these solutions exist in all even dimensions and are unstable in dimensions $2$, $4$ and $6$. Thus, after our result, the stability remains an open problem only in dimensions $8$, $10$, and $12$. The importance of studying this type of solution is due to its relation with the fractional version of a conjecture by De Giorgi. Saddle-shaped solutions are the simplest non 1D candidates to be global minimizers in high dimensions, a property not yet established in any dimension.
We study the problem of global exponential stabilization of original Burgers equations and the Burgers equation with nonlocal nonlinearities by controllers depending on finitely many parameters. It is shown that solutions of the controlled equations are steering a concrete solution of the non-controlled system as $trightarrow infty$ with an exponential rate.
We consider a space-homogeneous gas of {it inelastic hard spheres}, with a {it diffusive term} representing a random background forcing (in the framework of so-called {em constant normal restitution coefficients} $alpha in [0,1]$ for the inelasticity ). In the physical regime of a small inelasticity (that is $alpha in [alpha_*,1)$ for some constructive $alpha_* in [0,1)$) we prove uniqueness of the stationary solution for given values of the restitution coefficient $alpha in [alpha_*,1)$, the mass and the momentum, and we give various results on the linear stability and nonlinear stability of this stationary solution.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا