ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular Sensing Governs the Stability of Chemotactic Fronts

58   0   0.0 ( 0 )
 نشر من قبل Ricard Alert
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contexts ranging from embryonic development to bacterial ecology, cell populations migrate chemotactically along self-generated chemical gradients, often forming a propagating front. Here, we theoretically show that the stability of such chemotactic fronts to morphological perturbations is determined by limitations in the ability of individual cells to sense and thereby respond to the chemical gradient. Specifically, cells at bulging parts of a front are exposed to a smaller gradient, which slows them down and promotes stability, but they also respond more strongly to the gradient, which speeds them up and promotes instability. We predict that this competition leads to chemotactic fingering when sensing is limited at too low chemical concentrations. Guided by this finding and by experimental data on E. coli chemotaxis, we suggest that the cells sensory machinery might have evolved to avoid these limitations and ensure stable front propagation. Finally, as sensing of any stimuli is necessarily limited in living and active matter in general, the principle of sensing-induced stability may operate in other types of directed migration such as durotaxis, electrotaxis, and phototaxis.

قيم البحث

اقرأ أيضاً

An interacting pair of chemotactic (anti-chemotactic) active colloids, that can rotate their axes of self-propulsion to align {parallel (anti-parallel)} to a chemical gradient, shows dynamical behaviour that varies from bound states to scattering. Th e underlying two-body interactions are purely dynamical, non-central, non-reciprocal, and controlled by changing the catalytic activity and phoretic mobility. Mutually chemotactic colloids trap each other in a final state of fixed separation; the resulting `active dimer translates. A second type of bound state is observed where the polar axes undergo periodic cycles leading to phase-synchronised circular motion around a common point. These bound states are formed depending on initial conditions and can unbind on increasing the speed of self propulsion. Mutually anti-chemotactic swimmers always scatter apart. We also classify the fixed points underlying the bound states, and the bifurcations leading to transitions from one type of bound state to another, for the case of a single swimmer in the presence of a localised source of solute.
How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regul ating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratios time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.
Using a multiscale blood flow solver, the complete diffusion tensor of nanoparticle (NP) in sheared cellular blood flow is calculated over a wide range of shear rate and haematocrit. In the short-time regime, NPs exhibit anomalous dispersive behavior s under high shear and high haematocrit due to the transient elongation and alignment of the red blood cells (RBCs). In the long-time regime, the NP diffusion tensor features high anisotropy. Particularly, there exists a critical shear rate ($sim$100 $s^{-1}$) around which the shear-rate dependence of the diffusivity tensor changes from linear to nonlinear scale. Above the critical shear rate, the cross-stream diffusivity terms vary sublinearly with shear rate, while the longitudinal term varies superlinearly. The dependence on haematocrit is linear in general except at high shear rates, where a sublinear scale is found for the vorticity term and a quadratic scale for the longitudinal term. Through analysis of the suspension microstructure and numerical experiments, the nonlinear hemorheological dependence of the NP diffusion tensor is attributed to the streamwise elongation and cross-stream contraction of RBCs under high shear, quantified by a Capillary number. The RBC size is shown to be the characteristic length scale affecting the RBC-enhanced shear-induced diffusion (RESID), while the NP size at submicron exhibits negligible influence on the RESID. Based on the observed scaling behaviors, empirical correlations are proposed to bridge the NP diffusion tensor to specific shear rate and haematocrit. The characterized NP diffusion tensor provides a constitutive relation that can lead to more effective continuum models to tackle large-scale NP biotransport applications.
130 - Sara Cuenda , Angel Sanchez 2005
As a first step in the search of an analytical study of mechanical denaturation of DNA in terms of the sequence, we study stable, stationary solutions in the discrete, finite and homogeneous Peyrard-Bishop DNA model. We find and classify all the stat ionary solutions of the model, as well as analytic approximations of them, both in the continuum and in the discrete limits. Our results explain the structure of the solutions reported by Theodorakopoulos {em et al.} [Phys. Rev. Lett. {bf 93}, 258101 (2004)] and provide a way to proceed to the analysis of the generalized version of the model incorporating the genetic information.
We describe a model of cytoskeletal mechanics based on the force-induced conformational change of protein cross-links in a stressed polymer network. Slow deformation of simulated networks containing cross-links that undergo repeated, serial domain un folding leads to an unusual state--with many cross-links accumulating near the critical force for further unfolding. Thermal activation of these links gives rise to power-law rheology resembling the previously unexplained mechanical response of living cells. Moreover, we hypothesize that such protein cross-links function as biochemical mechano-sensors of cytoskeletal deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا