ﻻ يوجد ملخص باللغة العربية
Deep generative models have made great progress in synthesizing images with arbitrary human poses and transferring poses of one person to others. However, most existing approaches explicitly leverage the pose information extracted from the source images as a conditional input for the generative networks. Meanwhile, they usually focus on the visual fidelity of the synthesized images but neglect the inherent consistency, which further confines their performance of pose transfer. To alleviate the current limitations and improve the quality of the synthesized images, we propose a pose transfer network with Disentangled Feature Consistency (DFC-Net) to facilitate human pose transfer. Given a pair of images containing the source and target person, DFC-Net extracts pose and static information from the source and target respectively, then synthesizes an image of the target person with the desired pose from the source. Moreover, DFC-Net leverages disentangled feature consistency losses in the adversarial training to strengthen the transfer coherence and integrates the keypoint amplifier to enhance the pose feature extraction. Additionally, an unpaired support dataset Mixamo-Sup providing more extra pose information has been further utilized during the training to improve the generality and robustness of DFC-Net. Extensive experimental results on Mixamo-Pose and EDN-10k have demonstrated DFC-Net achieves state-of-the-art performance on pose transfer.
Human pose transfer, which aims at transferring the appearance of a given person to a target pose, is very challenging and important in many applications. Previous work ignores the guidance of pose features or only uses local attention mechanism, lea
Human pose transfer, as a misaligned image generation task, is very challenging. Existing methods cannot effectively utilize the input information, which often fail to preserve the style and shape of hair and clothes. In this paper, we propose an ada
This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the propose
Human pose transfer (HPT) is an emerging research topic with huge potential in fashion design, media production, online advertising and virtual reality. For these applications, the visual realism of fine-grained appearance details is crucial for prod
To achieve more accurate 2D human pose estimation, we extend the successful encoder-decoder network, simple baseline network (SBN), in three ways. To reduce the quantization errors caused by the large output stride size, two more decoder modules are