ترغب بنشر مسار تعليمي؟ اضغط هنا

Fossil group origins. XI. The dependence of galaxy orbits on the magnitude gap

167   0   0.0 ( 0 )
 نشر من قبل Stefano Zarattini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to study how the orbits of galaxies in clusters depend on the prominence of the corresponding central galaxies. We divided our data set of $sim$ 100 clusters and groups into four samples based on their magnitude gap between the two brightest members, $Delta m_{12}$. We then stacked all the systems in each sample, in order to create four stacked clusters, and derive the mass and velocity anisotropy profiles for the four groups of clusters using the MAMPOSSt procedure. Once the mass profile is known, we also obtain the (non parametric) velocity anisotropy profile via the inversion of the Jeans equation. In systems with the largest $Delta m_{12}$, galaxy orbits are prevalently radial, except near the centre, where orbits are isotropic (or tangential when also the central galaxies are considered in the analysis). In the other three samples with smaller $Delta m_{12}$, galaxy orbits are isotropic or only mildly radial. Our study supports the results of numerical simulations that identify radial orbits of galaxies as the cause of an increasing $Delta m_{12}$ in groups.

قيم البحث

اقرأ أيضاً

We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g ap between the two brightest cluster members. We then compute the velocity segregation in bins of absolute and relative magnitudes. Moreover, for each bin of magnitude gap we compute the radial profile of the velocity dispersion. When using absolute magnitudes, the segregation in velocity is limited to the two brightest bins and no significant difference is found for different magnitude gaps. However, when we use relative magnitudes, a trend appears in the brightest bin: the larger the magnitude gap, the larger the velocity segregation. We also show that this trend is mainly due to the presence, in the brightest bin, of satellite galaxies in systems with small magnitude gaps: in fact, if we study separately central galaxies and satellites, this trend is mitigated and central galaxies are more segregated than satellites for any magnitude gap. A similar result is found in the radial velocity dispersion profiles: a trend is visible in central regions (where the BCGs dominate) but, if we analyse the profile using satellites alone, the trend disappears. In the latter case, the shape of the velocity dispersion profile in the centre of systems with different magnitude gaps show three types of behaviours: systems with the smallest magnitude gaps have an almost flat profile from the centre to the external regions; systems with the largest magnitude gaps show a monothonical growth from the low values of the central part to the flat ones in the external regions; finally, systems with $1.0 < Delta m_{12} le 1.5$ show a profile that peaks in the centres and then decreases towards the external regions. We suggest that two mechanisms could be respons....
Fossil groups (FGs) are galaxy aggregates with an extended and luminous X-ray halo, which are dominated by a very massive early-type galaxy and lack of L* objects. FGs are indeed characterized by a large magnitude gap between their central and surrou nding galaxies. This is explained by either speculating that FGs are failed groups that formed without bright satellite galaxies and did not suffer any major merger, or by suggesting that FGs are very old systems that had enough time to exhaust their bright satellite galaxies through multiple major mergers. Since major mergers leave signatures in the stellar populations of the resulting galaxy, we study the stellar population parameters of the brightest central galaxies (BCGs) of FGs as a benchmark against which the formation and evolution scenarios of FGs can be compared. We present long-slit spectroscopic observations along different axes of NGC 6482 and NGC 7556, which are the BCGs of two nearby FGs. The measurements include spatially resolved stellar kinematics and radial profiles of line-strength indices, which we converted into stellar population parameters using single stellar-population models. NGC 6482 and NGC 7556 are very massive and large galaxies and host a centrally concentrated stellar population, which is significantly younger and more metal rich than the rest of the galaxy. The age gradients of both galaxies are somewhat larger than those of the other FG BCGs studied so far, whereas their metallicity gradients are similarly negative and shallow. They have negligible gradients of alpha-element abundance ratio. The measured metallicity gradients are less steep than those predicted for massive galaxies that formed monolithically and evolved without experiencing any major merger. We conclude that the observed FGs formed through major mergers rather than being failed groups that lacked bright satellite galaxies from the beginning.
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X- ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5 x 10^14 solar mass fossil group with an M_r = -24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e. a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed and asymmetrical, with a cold front following a possible bow shock. We discuss possible origins of the disturbed hot halo, including sloshing by a nearby object, merger, ram pressure by external hotter gas and nuclear outburst. We consider that the first two mechanisms are likely explanations for the disturbed hot halo, with a slight preference for a minor merger with a low impact parameter because of the match with simulations and previous optical observations. In this case, NGC 1132 may be a rare example of unusual late mergers seen in recent simulations. Regardless of the origin of the disturbed hot halo, the paradigm of the fossil system needs to be reconsidered.
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in flated bubble located outside the core, but discounted this possibility because it required much too powerful an AGN outburst. Using low-frequency (72-240 MHz) radio data from MWA GLEAM and GMRT, we found that the X-ray structure is, in fact, a giant cavity in the X-ray gas filled with diffuse radio emission with an extraordinarily steep radio spectrum. It thus appears to be a very aged fossil of the most powerful AGN outburst seen in any galaxy cluster ($pVsim 5times 10^{61}$ erg for this cavity). There is no apparent diametrically opposite counterpart either in X-ray or in the radio. It may have aged out of the observable radio band because of the cluster asymmetry. At present, the central AGN exhibits only a weak radio source, so it should have been much more powerful in the past to have produced such a bubble. The AGN is currently starved of accreting cool gas because the gas density peak is displaced by core sloshing. The sloshing itself could have been set off by this extraordinary explosion if it had occurred in an asymmetric gas core. This dinosaur may be an early example of a new class of sources to be uncovered by low-frequency surveys of galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا