ﻻ يوجد ملخص باللغة العربية
We aim to study how the orbits of galaxies in clusters depend on the prominence of the corresponding central galaxies. We divided our data set of $sim$ 100 clusters and groups into four samples based on their magnitude gap between the two brightest members, $Delta m_{12}$. We then stacked all the systems in each sample, in order to create four stacked clusters, and derive the mass and velocity anisotropy profiles for the four groups of clusters using the MAMPOSSt procedure. Once the mass profile is known, we also obtain the (non parametric) velocity anisotropy profile via the inversion of the Jeans equation. In systems with the largest $Delta m_{12}$, galaxy orbits are prevalently radial, except near the centre, where orbits are isotropic (or tangential when also the central galaxies are considered in the analysis). In the other three samples with smaller $Delta m_{12}$, galaxy orbits are isotropic or only mildly radial. Our study supports the results of numerical simulations that identify radial orbits of galaxies as the cause of an increasing $Delta m_{12}$ in groups.
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g
Fossil groups (FGs) are galaxy aggregates with an extended and luminous X-ray halo, which are dominated by a very massive early-type galaxy and lack of L* objects. FGs are indeed characterized by a large magnitude gap between their central and surrou
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-
We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e. a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in