ﻻ يوجد ملخص باللغة العربية
We study charged lepton flavor violation (CLFV) associated with heavy quark pair production in lepton-nucleon deep-inelastic scattering $ell_i N to ell_j qbar{q} X$. Here $ell_i$ and $ell_j$ denote the initial and final leptons, $N$ and $X$ are initial nucleon and arbitrary final hadronic system, respectively. We employ a model Lagrangian in which a scalar and psuedoscalar mediator generate the CLFV. We derive heavy quark structure functions for scalar and pseudoscalar currents, and compute momentum distributions of the final lepton for the process. Our focus is on the heavy quark mass effects in the final lepton momentum distribution. We clarify a necessity of inclusion of the heavy quark mass to rise a sensitivity of search for CLFV in the deep inelastic scattering.
We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel $epto tau X$, within the model-independent framework of the Standard Model Effective Field Th
We review recent results from the H1 and ZEUS experiments at HERA on charm and beauty production in ep collisions at 300 - 318 GeV centre-of-mass energy.
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the
We study the lepton-jet correlation in deep inelastic scattering. We perform one-loop calculations for the spin averaged and transverse spin dependent differential cross sections depending on the total transverse momentum of the final state lepton an
We investigate the sensitivity of electron-proton ($ep$) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the e