ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering thermal transport across layered graphene-MoS2 superlattices

156   0   0.0 ( 0 )
 نشر من قبل Aditya Sood
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layering two-dimensional van der Waals materials provides unprecedented control over atomic placement, which could enable tailoring of vibrational spectra and heat flow at the sub-nanometer scale. Here, using spatially-resolved ultrafast thermoreflectance and spectroscopy, we uncover the design rules governing cross-plane heat transport in superlattices assembled from monolayers of graphene (G) and MoS2 (M). Using a combinatorial experimental approach, we probe nine different stacking sequences: G, GG, MG, GGG, GMG, GGMG, GMGG, GMMG, GMGMG and identify the effects of vibrational mismatch, interlayer adhesion, and junction asymmetry on thermal transport. Pure G sequences display signatures of quasi-ballistic transport, whereas adding even a single M layer strongly disrupts heat conduction. The experimental data are described well by molecular dynamics simulations which include thermal expansion, accounting for the effect of finite temperature on the interlayer spacing. The simulations show that a change of only 1.5% in the layer separation can lead to a nearly 100% increase of the thermal resistance. Using these design rules, we experimentally demonstrate a 5-layer GMGMG superlattice with an ultralow effective cross-plane thermal conductivity comparable to air, paving the way for a new class of thermal metamaterials with extreme properties.



قيم البحث

اقرأ أيضاً

Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolaye r to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport.
192 - Rui Mao , Byoung Don Kong , 2014
Thermal transport properties at the metal/MoS2 interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS2 and Ru( 0001)/MoS2, physisorbed Au(111)/MoS2, as well as Pd(111)/MoS2 with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS2 and metal/graphene systems suggests that metal/MoS2 is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origin of the observed large thermal resistance.
We reveal that phononic thermal transport in graphene is not immune to grain boundaries (GBs) aligned along the direction of the temperature gradient. Non-equilibrium molecular dynamics simulations uncover a large reduction in the phononic thermal co nductivity ($kappa_p$) along linear ultra-narrow GBs comprising periodically-repeating pentagon-heptagon dislocations. Greens function calculations and spectral energy density analysis indicate that $kappa_p$ is the complex manifestation of the periodic strain field, which behaves as a reflective diffraction grating with both diffuse and specular phonon reflections, and represents a source of anharmonic phonon-phonon scattering. Our findings provide new insights into the integrity of the phononic thermal transport in GB graphene.
Interfacial thermal transport between electrodes and polymer electrolytes can play a crucial role in the thermal management of solid-state lithium-ion batteries (SLIBs). Modifying the electrode surface with functional molecules can effectively increa se the interfacial thermal conductance (ITC) between electrodes and polymers (e.g., electrolytes, separators); however, how they influence the interfacial thermal transport in SLIBs during charge/discharge remains unknown. In this work, we conduct molecular dynamics (MD) simulations to investigate the ITC between charged electrodes and solid-state polymer electrolytes (SPEs) mixed with ionic liquids (ILs). We find that ILs could self assemble at the electrode surface and act as non-covalent functional molecules that could significantly enhance the interfacial thermal transport during charge/discharge because of the formation of a densely packed cationic or anionic layer at the interface. While the electrostatic interactions between the charged electrode and the IL ions are responsible for forming these dense interfacial layers, the enhancement of ITC is mainly contributed by the increased Lennard-Jones (LJ) interactions between the charged electrodes and ILs. This work may provide useful insights into the understanding of interfacial thermal transport between electrodes and electrolytes of SLIBs during charge/discharge.
In a number of current experiments in the field of spin-caloritronics a temperature gradient across a nanostructured interface is applied and spin-dependent transport phenomena are observed. However, a lack in the interpretation and knowledge let it unclear how the temperature drop across a magnetic nanostructured interface looks like where both phonons and electrons may contribute to thermal transport. We answer this question for the case of a magnetic tunnel junction (MTJ) where the tunneling magneto Seebeck effect occurs. Nevertheless, our results can be extended to other nanostructured interfaces as well. Using an textit{ab initio} method we explicitly calculate phonon and electron thermal conductance across the Fe/MgO/Fe-MTJs by using Greens function method. Further, by estimating the electron-phonon interaction in the Fe leads we are able to calculate the electron and phonon temperature profile across the Fe/MgO/Fe-MTJ. Our results show that there is an electron-phonon temperature imbalance at the Fe-MgO interfaces. In consequence, a revision of the interpretation of current experimental measurements might be necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا